Research Article
BibTex RIS Cite
Year 2020, Volume: 41 Issue: 1, 305 - 310, 22.03.2020
https://doi.org/10.17776/csj.603329

Abstract

Project Number

117M257

References

  • [1] Mas-Ballesté R., Gómez-Navarro C., Gómez-Herrero J. and Zamora F. 2D materials: To graphene and beyond. Nanoscale, 3-1 (2011) 20–30.
  • [2] Lin T.W., Chang C.S., Chang K.D., Zhang W., Yu Y.C., Zhang X.Q., Chang M.T., Li L.J., Wang J.T.W, Lee Y.H. and Lin C.T. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater., 24-17 (2012) 2320–2325.
  • [3] Gomathi A., Late D.J., Pati S.K., Manna A.K., Rao C.N.R., Ramakrishna Matte H.S.S. and Datta R. MoS2 and WS2 Analogues of Graphene, Angew. Chemie Int. Ed., 49-24 (2010) 4059–4062.
  • [4] Hayashi T., Terrones H., Pradhan N.R., Castro-Beltrán A., Long A.D., Mallouk T.E., Endo M., Gutiérrez H.R., Feng S., Kim Y.A., Lv R., Perea-López N., Balicas L., Elías A.L., López-Urías F., Berkdemir A. and Terrones M. Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers , ACS Nano, 7-6 (2013) 5235–5242.
  • [5] Li L.J., Eda G., Zhang H., Loh K.P., Shin H.S. and Chhowalla M. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5-4 (2013) 263–275.
  • [6] Strano M.S., Kis A., Coleman J.N., Wang Q.H. and Kalantar-Zadeh K. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7-11 (2012) 699–712.
  • [7] Baugher B.W.H., Churchill H.O.H., Yang Y. and Jarillo-Herrero P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett., 13-9 (2013) 4212–4216.
  • [8] Li B.L., Wang J., Zou H.L., Garaj S., Lim C.T., Xie J., Li N.B. and Leong D.T. Low-Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Adv. Funct. Mater., 26-39 (2016) 7034–7056.
  • [9] Wang H., Lu Z., Xu S., Kong D., Cha J.J., Zheng G., Hsu P.C., Yan K., Bradshaw D., Prinz F.B. and Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U.S.A., 110-49 (2013) 19701-19706.
  • [10] Simmonds M.C., Savan A., Pflüger E. and Van Swygenhoven H. Mechanical and tribological performance of MoS2 co-sputtered composites. Surf. Coatings Technol., 126-1 (2000) 15–24.
  • [11] Giacometti V., Radisavljevic B., Radenovic A., Brivio J. and Kis A. Single-layer MoS2 transistors. Nat. Nanotechnol., 6-3 (2011) 147–150.
  • [12] Pu J., Yomogida Y., Liu K., Li L., Iwasa Y. and Takenobu T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett., 12-8 (2012) 4013-4017.
  • [13] Yoon Y., Ganapathi K. and Salahuddin S. How Good Can Monolayer MoS2 Transistors Be ?. Electr. Eng., 11-9 (2011) 3768–3773.
  • [14] Meng X., Tang M., Liao L., Chu J., Hu W., Wang X., Lin T., Wang J., Sun S., Shen H., Zhou X., Huang H., Chen X., Jiang A., Wang P., Lu W., Sun J. and Guo N. Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater., 27-42 (2015) 6575–6581.
  • [15] Kufer D. and Konstantatos G. Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. Nano Lett. 15-11 (2015) 7307–7313.
  • [16] Renevier N.M., Hamphire J., Fox V.C., Witts J., Allen T. and Teer D.G. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings. Surf. Coatings Technol., 142 (2001) 67–77.
  • [17] Donnet C., Le Mogne T., Martin J.M., Fayeulle S., Tonck A., Moncoffre N. and Millard‐Pinard N. Nature of super‐lubricating MoS2 physical vapor deposition coatings. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 12-4 (2002) 1998–2004.
  • [18] Hinnemann B., Moses P.G., Bonde J., Jørgensen K.P., Nielsen J.H., Horch S., Chorkendorff I. and Nørskov J.K. J. Am. Chem. Soc., 127-15 (2005) 5308–5309.
  • [19] Lukowski M.A., Daniel A.S., Meng F., Forticaux A., Li L. and Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc., 135-28 (2013) 10274–10277.
  • [20] Li Y., Wang H., Xie L., Liang Y., Hong G. and Dai H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 133-19 (2011) 7296–7299.
  • [21] Chorkendorff I., Bonde J., Jorgensen K.P., Horch S., Jaramillo T.F. and Nielsen J.H. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science, 317-5834 (2007) 100–102.
  • [22] Junfeng X., Hao Z., Shuang L., Ruoxing W., Xu S., Min Z., Jingfang Z., David L.X.W. and Yi X. Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater., 25-40 (2013) 5807–5813.
  • [23] Li H., Duan X., Wu X., Zhuang X., Zhou H., Zhang Q., Zhu X., Pan A. and Duan X. Growth of Alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc., 136-10 (2014) 8–11.
  • [24] Nipane A., Karmakar D., Kaushik N., Karande S. and Lodha S. Few-Layer MoS2 p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation. ACS Nano., 10-2 (2016) 2128–2137.
  • [25] Yang L., Majumdar K., Liu H., Du Y., Wu H., Hatzistergos M., Hung P.Y., Tieckelmann R., Tsai W., Hobbs C. and Ye P.D. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett., 14-11 (2014) 6275–6280.
  • [26] Xu W., Huang Z., Zhu D., Xiong X., Lu Y., Chen L., He Z., Liu W., Liu Q., Ao J.P., Jiang H., Ang K.W., Han S., Yu W., Cao P., Wu J., He J. and Liu X. Monolayer WxMo1−xS2 Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors. Adv. Funct. Mater., 27-13 (2017) 1606469.
  • [27] Zhang M., Wu J., Zhu Y., Dumcenco D.O., Hong J., Mao N., Deng S., Chen Y., Yang Y., Jin C., Chaki S.H., Huang Y.S., Zhang J., Xie L. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano, 8-7 (2014) 7130–7137.
  • [28] Li B., Huang L., Zhong M., Huo N., Li Y., Yang S., Fan C., Yang J., Hu W., Wei Z. and Li J. Synthesis and Transport Properties of Large-Scale Alloy Co0.16Mo0.84S2 Bilayer Nanosheets. ACS Nano, 9-2 (2015) 1257–1262.
  • [29] Deng J., Li H., Xiao J., Tu Y., Deng D., Yang H., Tian H., Li J., Ren P. and Bao X. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci., 8-5 (2015) 1594–1601.
  • [30] Gao G., Sun Q. and Du A. Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. J. Phys. Chem. C., 120-30 (2016) 16761–16766.
  • [31] Shi Y., Zhou Y., Yang D.R., Xu W.X., Wang C., Bin Wang F., Xu J.J., Xia X.H. and Chen H.Y. Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. J. Am. Chem. Soc., 139-43 (2017) 15479–15485.
  • [32] Wang H., Tsai C., Kong D., Chan K., Abild-Pedersen F., Nørskov J.K. and Cui Y. Transition-metal doped edge sites in vertically aligned MoS2catalysts for enhanced hydrogen evolution. Nano Res., 8-2 (2015) 566–575.
  • [33] Zhang J., Feng J., Ma X., An C., Sun Y., Li J., Chi Y. and Liu J. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res., 9-8 (2016) 2284–2293.
  • [34] Ye R., Del Angel-Vicente P., Liu Y., Arellano-Jimenez M.J., Peng Z., Wang T., Li Y., Yakobson B.I., Wei S.H., Yacaman M.J. and Tour J.M. High-Performance Hydrogen Evolution from MoS2(1-x)Px Solid Solution. Adv. Mater., 28-7 (2016) 1427–1432.
  • [35] Kiran V., Mukherjee D., Jenjeti R.N. and Sampath S. Active guests in the MoS2/MoSe2 host lattice: Efficient hydrogen evolution using few-layer alloys of MoS2(1-x)Se2x. Nanoscale, 6-21 (2014) 12856–12863.
  • [36] Sun X., Dai J., Guo Y., Wu C., Hu F., Zhao J., Zeng X. and Xie Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 6-14 (2014) 8359–8367.
  • [37] Lewis D.J., Tedstone A.A., Zhong X.L., Lewis E.A., Rooney A., Savjani N., Brent J.R., Haigh S.J., Burke M.G., Muryn C.A., Raftery J.M., Warrens C., West K., Gaemers S. and O’Brien P. Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater., 27-4 (2015) 1367–1374.
  • [38] Yang L., Zhang J., Xiang B., Wang W. and Fu Q. MoS 2(1−x) Se 2x Nanobelts for Enhanced Hydrogen Evolution. Electrochim. Acta., 185 (2015) 236–241.
  • [39] Gershinsky G., Stern C., Shokhen V., Miroshnikov Y., Zitoun D., Gotlib N. and Naveh D. On the impact of Vertical Alignment of MoS2 for Efficient Lithium Storage. Sci. Rep., 7-1 (2017) 1–11.
  • [40] Li H., Zhang Q., Yap C.C.R., Tay B.K., Edwin T.H.T., Olivier A. and Baillargeat D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 22-7 (2012) 1385–1390.
  • [41] Chakraborty B., Matte H.S.S.R., Sood A.K. and Rao C.N.R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc., 44-1 (2013) 92–96.
  • [42] Zhang W., Huang J.K., Chen C.H., Chang Y.H., Cheng Y.J. and Li L.J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater., 25-25 (2013) 3456–3461.
  • [43] Liu Y., Woods J.M., Shen J., Sun Y., Cha J.J. and Jung Y. Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS2 and WS2. Nano Lett., 14-12 (2014) 6842–6849.

Controlled vanadium doping of mos2 thin films through co-sputtering and thermal sulfurization

Year 2020, Volume: 41 Issue: 1, 305 - 310, 22.03.2020
https://doi.org/10.17776/csj.603329

Abstract

Recently, transition metal dichalcogenides (TMDs) have gained great attention owing to their remarkable properties. The electronic structure of TMDs can be modified by substitutional doping, which could give rise to novel and exciting properties. In this study, a strategy is presented for controlled vanadium (V) doping of MoS2, in which V doped MoS2 films with good uniformity are prepared by thermal sulfurization of V-Mo alloy films deposited using co-sputtering. The V incorporation in MoS2 induces p type doping, which enhances the electrical conductivity of MoS2 by a factor of 35-40. Such doping strategy and consequent conductivity improvement may be useful in many applications such as catalysis, nanoelectronics and optoelectronics.

Supporting Institution

The Scientific and Technological Research Council of Turkey

Project Number

117M257

Thanks

I would like to thank Dr. Zeliha Ertekin for her help with the four-point probe measurements.

References

  • [1] Mas-Ballesté R., Gómez-Navarro C., Gómez-Herrero J. and Zamora F. 2D materials: To graphene and beyond. Nanoscale, 3-1 (2011) 20–30.
  • [2] Lin T.W., Chang C.S., Chang K.D., Zhang W., Yu Y.C., Zhang X.Q., Chang M.T., Li L.J., Wang J.T.W, Lee Y.H. and Lin C.T. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater., 24-17 (2012) 2320–2325.
  • [3] Gomathi A., Late D.J., Pati S.K., Manna A.K., Rao C.N.R., Ramakrishna Matte H.S.S. and Datta R. MoS2 and WS2 Analogues of Graphene, Angew. Chemie Int. Ed., 49-24 (2010) 4059–4062.
  • [4] Hayashi T., Terrones H., Pradhan N.R., Castro-Beltrán A., Long A.D., Mallouk T.E., Endo M., Gutiérrez H.R., Feng S., Kim Y.A., Lv R., Perea-López N., Balicas L., Elías A.L., López-Urías F., Berkdemir A. and Terrones M. Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers , ACS Nano, 7-6 (2013) 5235–5242.
  • [5] Li L.J., Eda G., Zhang H., Loh K.P., Shin H.S. and Chhowalla M. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5-4 (2013) 263–275.
  • [6] Strano M.S., Kis A., Coleman J.N., Wang Q.H. and Kalantar-Zadeh K. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7-11 (2012) 699–712.
  • [7] Baugher B.W.H., Churchill H.O.H., Yang Y. and Jarillo-Herrero P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett., 13-9 (2013) 4212–4216.
  • [8] Li B.L., Wang J., Zou H.L., Garaj S., Lim C.T., Xie J., Li N.B. and Leong D.T. Low-Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Adv. Funct. Mater., 26-39 (2016) 7034–7056.
  • [9] Wang H., Lu Z., Xu S., Kong D., Cha J.J., Zheng G., Hsu P.C., Yan K., Bradshaw D., Prinz F.B. and Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U.S.A., 110-49 (2013) 19701-19706.
  • [10] Simmonds M.C., Savan A., Pflüger E. and Van Swygenhoven H. Mechanical and tribological performance of MoS2 co-sputtered composites. Surf. Coatings Technol., 126-1 (2000) 15–24.
  • [11] Giacometti V., Radisavljevic B., Radenovic A., Brivio J. and Kis A. Single-layer MoS2 transistors. Nat. Nanotechnol., 6-3 (2011) 147–150.
  • [12] Pu J., Yomogida Y., Liu K., Li L., Iwasa Y. and Takenobu T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett., 12-8 (2012) 4013-4017.
  • [13] Yoon Y., Ganapathi K. and Salahuddin S. How Good Can Monolayer MoS2 Transistors Be ?. Electr. Eng., 11-9 (2011) 3768–3773.
  • [14] Meng X., Tang M., Liao L., Chu J., Hu W., Wang X., Lin T., Wang J., Sun S., Shen H., Zhou X., Huang H., Chen X., Jiang A., Wang P., Lu W., Sun J. and Guo N. Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater., 27-42 (2015) 6575–6581.
  • [15] Kufer D. and Konstantatos G. Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. Nano Lett. 15-11 (2015) 7307–7313.
  • [16] Renevier N.M., Hamphire J., Fox V.C., Witts J., Allen T. and Teer D.G. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings. Surf. Coatings Technol., 142 (2001) 67–77.
  • [17] Donnet C., Le Mogne T., Martin J.M., Fayeulle S., Tonck A., Moncoffre N. and Millard‐Pinard N. Nature of super‐lubricating MoS2 physical vapor deposition coatings. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 12-4 (2002) 1998–2004.
  • [18] Hinnemann B., Moses P.G., Bonde J., Jørgensen K.P., Nielsen J.H., Horch S., Chorkendorff I. and Nørskov J.K. J. Am. Chem. Soc., 127-15 (2005) 5308–5309.
  • [19] Lukowski M.A., Daniel A.S., Meng F., Forticaux A., Li L. and Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc., 135-28 (2013) 10274–10277.
  • [20] Li Y., Wang H., Xie L., Liang Y., Hong G. and Dai H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 133-19 (2011) 7296–7299.
  • [21] Chorkendorff I., Bonde J., Jorgensen K.P., Horch S., Jaramillo T.F. and Nielsen J.H. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science, 317-5834 (2007) 100–102.
  • [22] Junfeng X., Hao Z., Shuang L., Ruoxing W., Xu S., Min Z., Jingfang Z., David L.X.W. and Yi X. Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater., 25-40 (2013) 5807–5813.
  • [23] Li H., Duan X., Wu X., Zhuang X., Zhou H., Zhang Q., Zhu X., Pan A. and Duan X. Growth of Alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc., 136-10 (2014) 8–11.
  • [24] Nipane A., Karmakar D., Kaushik N., Karande S. and Lodha S. Few-Layer MoS2 p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation. ACS Nano., 10-2 (2016) 2128–2137.
  • [25] Yang L., Majumdar K., Liu H., Du Y., Wu H., Hatzistergos M., Hung P.Y., Tieckelmann R., Tsai W., Hobbs C. and Ye P.D. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett., 14-11 (2014) 6275–6280.
  • [26] Xu W., Huang Z., Zhu D., Xiong X., Lu Y., Chen L., He Z., Liu W., Liu Q., Ao J.P., Jiang H., Ang K.W., Han S., Yu W., Cao P., Wu J., He J. and Liu X. Monolayer WxMo1−xS2 Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors. Adv. Funct. Mater., 27-13 (2017) 1606469.
  • [27] Zhang M., Wu J., Zhu Y., Dumcenco D.O., Hong J., Mao N., Deng S., Chen Y., Yang Y., Jin C., Chaki S.H., Huang Y.S., Zhang J., Xie L. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano, 8-7 (2014) 7130–7137.
  • [28] Li B., Huang L., Zhong M., Huo N., Li Y., Yang S., Fan C., Yang J., Hu W., Wei Z. and Li J. Synthesis and Transport Properties of Large-Scale Alloy Co0.16Mo0.84S2 Bilayer Nanosheets. ACS Nano, 9-2 (2015) 1257–1262.
  • [29] Deng J., Li H., Xiao J., Tu Y., Deng D., Yang H., Tian H., Li J., Ren P. and Bao X. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci., 8-5 (2015) 1594–1601.
  • [30] Gao G., Sun Q. and Du A. Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. J. Phys. Chem. C., 120-30 (2016) 16761–16766.
  • [31] Shi Y., Zhou Y., Yang D.R., Xu W.X., Wang C., Bin Wang F., Xu J.J., Xia X.H. and Chen H.Y. Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. J. Am. Chem. Soc., 139-43 (2017) 15479–15485.
  • [32] Wang H., Tsai C., Kong D., Chan K., Abild-Pedersen F., Nørskov J.K. and Cui Y. Transition-metal doped edge sites in vertically aligned MoS2catalysts for enhanced hydrogen evolution. Nano Res., 8-2 (2015) 566–575.
  • [33] Zhang J., Feng J., Ma X., An C., Sun Y., Li J., Chi Y. and Liu J. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res., 9-8 (2016) 2284–2293.
  • [34] Ye R., Del Angel-Vicente P., Liu Y., Arellano-Jimenez M.J., Peng Z., Wang T., Li Y., Yakobson B.I., Wei S.H., Yacaman M.J. and Tour J.M. High-Performance Hydrogen Evolution from MoS2(1-x)Px Solid Solution. Adv. Mater., 28-7 (2016) 1427–1432.
  • [35] Kiran V., Mukherjee D., Jenjeti R.N. and Sampath S. Active guests in the MoS2/MoSe2 host lattice: Efficient hydrogen evolution using few-layer alloys of MoS2(1-x)Se2x. Nanoscale, 6-21 (2014) 12856–12863.
  • [36] Sun X., Dai J., Guo Y., Wu C., Hu F., Zhao J., Zeng X. and Xie Y. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 6-14 (2014) 8359–8367.
  • [37] Lewis D.J., Tedstone A.A., Zhong X.L., Lewis E.A., Rooney A., Savjani N., Brent J.R., Haigh S.J., Burke M.G., Muryn C.A., Raftery J.M., Warrens C., West K., Gaemers S. and O’Brien P. Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater., 27-4 (2015) 1367–1374.
  • [38] Yang L., Zhang J., Xiang B., Wang W. and Fu Q. MoS 2(1−x) Se 2x Nanobelts for Enhanced Hydrogen Evolution. Electrochim. Acta., 185 (2015) 236–241.
  • [39] Gershinsky G., Stern C., Shokhen V., Miroshnikov Y., Zitoun D., Gotlib N. and Naveh D. On the impact of Vertical Alignment of MoS2 for Efficient Lithium Storage. Sci. Rep., 7-1 (2017) 1–11.
  • [40] Li H., Zhang Q., Yap C.C.R., Tay B.K., Edwin T.H.T., Olivier A. and Baillargeat D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 22-7 (2012) 1385–1390.
  • [41] Chakraborty B., Matte H.S.S.R., Sood A.K. and Rao C.N.R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc., 44-1 (2013) 92–96.
  • [42] Zhang W., Huang J.K., Chen C.H., Chang Y.H., Cheng Y.J. and Li L.J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater., 25-25 (2013) 3456–3461.
  • [43] Liu Y., Woods J.M., Shen J., Sun Y., Cha J.J. and Jung Y. Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS2 and WS2. Nano Lett., 14-12 (2014) 6842–6849.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Engineering Sciences
Authors

Cihan Kuru 0000-0002-8565-8068

Project Number 117M257
Publication Date March 22, 2020
Submission Date August 7, 2019
Acceptance Date March 11, 2020
Published in Issue Year 2020Volume: 41 Issue: 1

Cite

APA Kuru, C. (2020). Controlled vanadium doping of mos2 thin films through co-sputtering and thermal sulfurization. Cumhuriyet Science Journal, 41(1), 305-310. https://doi.org/10.17776/csj.603329