Research Article
BibTex RIS Cite

Preparation and Characterization of the Sol-Gel Silica Containing Ionic Liquids as a Potential Adsorbent for the Removal of Cr(VI) Ions from Aqueous Solutions

Year 2020, Volume: 41 Issue: 1, 281 - 289, 22.03.2020
https://doi.org/10.17776/csj.359471

Abstract

In
this study ionic liquid mediated sol-gel silica adsorbents were prepared and characterized
to investigate the sorption of Cr (VI) ions from aqueous solutions. For this
purpose silica based adsorbents containing ionic liquids (ILs) were synthesized
by following the sol-gel method in ionic liquid media. Thus the high extracting
ability of ILs were combined with the surface properties of silica substances.
Commercial (Aliquat 336® and EMIMTf2N) and synthesized
([A336][NO3]) ionic liquids were incorporated directly by sol-gel process.
Silica based adsorbents were being initiated with silica precursor (TEOS),
water, alcohol and ionic liquid hydrolysis in the presence of an acid catalyst
then completed with a condensation reaction. Chemical and morphological
characterization of prepared adsorbents have been investigated by FTIR, SEM and
BET analysis. The materials exhibited average pore diameter of 2 nm, pore
volume of 0.3 cm3/g and BET surface area of 300–600 m2/g.
The sorption behaviors of adsorbents have been investigated by using a series
of batch sorption studies. Cr(VI) sorption percentages of the adsorbents were
enhanced by containing ILs up to 99% with the adsorption capacity of 31.74
mg/g. It can be concluded that sorption of Cr(VI) ions from aqueous solution by
sol-gel silica based adsorbents containing Aliquat 336 takes place favorably
and these type of adsorbents are promising agents in the adsorption processes.

References

  • [1] Liu Y., Guo L., Zhu L., Sun X., Chen J., Removal of Cr (VI) by quaternary ammonium and quaternary phosphonium ionic liquids functionalized silica materials, Chem. Eng. J. 158, (2010) 108-114.
  • [2] World Health Organisation (WHO) sensate, Available at http://www.who.int/water_sanitation_health/dwq/chemicals/chromium.pdf. Retrieved at 15 October (2017).
  • [3] Lin X., Liu J., Wan S., He X., Cui L., Wu G. A novel strategy for Cr (VI) removal from aqueous solution via CYPH@ IL101/chitosan capsule, Int. J. Biol. Macromol., 136 (2019) 35–47.
  • [4] Rawat A. P., Sing D. P. Synergistic action of adsorption and reductive properties of ash derived from distilled Mentha piperita plant waste in removal of Cr(VI) from aqueous solution, Ecotoxicol. Environ. Saf., 176 (2019) 27-33.
  • [5] Zhou L., Duan Y., Xu X. Facile preparation of amine-rich polyamidoamine (PAMAM) gel for highly efficient removal of Cr(VI) ions, Colloids and Surfaces A, 579 (2019), 123685.
  • [6] Shakya A., Agarwal T. Removal of Cr(VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment, J. Mol. Liq., (2019) 111497.
  • [7] Sellami F., Kebiche-Senhadji O., Marais S., Couvrat N., Fatyeyeva K. Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr(VI): Efficiency, stability and selectivity, React. Funct. Polym., 139 (2019) 120-132.
  • [8] Benaissa H., Elouchdi M. A. Removal of copper ions from aqueous solutions by dried sunflower leaves, Chem. Eng. Process., 46 (2007) 614-622.
  • [9] Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407-418.
  • [10] Bilal M., Shah J. A., Ashfaq T., Gardazi S. S, Tahir A. A., Pervez A., Haroon H., Mahmood Q. J. Waste biomass adsorbents for copper removal from industrial waste water-a review, J. Hazard. Mater., 262(3) (2013) 322-333.
  • [11] Mahmoud M.E., Hafez O. F., Alrefaay A., Osman M. M. Performance evaluation of hybrid inorganic/organic adsorbents in removal and preconcentration of heavy metals from drinking and industrial waste water, Desalination, 253 (2010) 9-15.
  • [12] Tian Y., Yin P., Qu R., Wang C., Zheng H., Yu Z. Removal of transition metal ions from aqueous solution by adsorption using a novel hybrid material silica gel chemically modified by trithylenetetraminomethylenephosphonic acid, Chem. Eng. J., 162 (2010) 573-579.
  • [13] Gizli N., Arabacı M., Enhanced sorption of Cu(II) ions from aqueous solution by ionic liquid impregnated nano-silica and nano-alumina particles, Chem. Ind. Chem. Eng. Q., 23(2) (2017) 207-216.
  • [14] Peric B., Martí E., Sierra J., Cruañas R., Garau M.A., Recent Advances in Pharmaceutical Sciences II, Munoz-Torrero D., Haro D., Valles J., (Eds). Transworld Research Network. Kerela, India, (2012).
  • [15] Stojanovic A., Keppler B., Ionic liquids as extracting agents for heavy metals, Sep. Sci. Technol., 47 (2012) 183-203.
  • [16] Dong Z., Zhao L. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation, Carbohydr. Polym., 189 (2018), 190-197.
  • [17] Kim B-K., Lee E. J., Kang Y., Lee J-J. Application of ionic liquids for metal dissolution and extraction, J. Ind. Eng. Chem., 61 ( 2017) 388-397.
  • [18] Li Z. L., Lin G., Zhenjiang Z., Ji C., Min Z. S. The preparation of supported ionic liquids (SILs) and their applications in rare metal separation, Science China Chemistry, 55 (2012) 1479-1488.
  • [19] Lemus J., Palomar J., Gilarranz M. A., Rodriguez J. J. Characterization of Supported Ionic Liquid Phase (SILP) materials prepared from different supports, Adsorption, 17 (2011) 561–571.
  • [20] Hung W-C., Fu S-H., Tseng J-J, Chu H., Ko T-H. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method, Chemosphere, 66 (2007) 2142–2151.
  • [21] Dai S., Ju Y. H., Gao H. J., Lin J. S., Pennycook S. J., Barnes C. E. Preparation of silica aerogel using ionic liquids as solvents, Chem Commun., 3 (2000) 243-244.
  • [22] Perchacz M., Donato R. K., Seixas L., Zhigunov A., Konefat R., Serkis-Rodzen M., Benes H. Ionic liquid-silica precursors via solvent-free sol−gel process and their application in epoxy-amine network: a theoretical/experimental study, ACS Appl. Mater. Interfaces, 9 (2017) 16474−16487.
  • [23] Zhou Y., Schattka J. H., Antonietti M. Room- temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique, Nano Letters, 4(3) (2002), 477-481.
  • [24] Viau L.,Neouze M-A., Biolley C., Volland S., Brevet D., Gaveau P., Dieudonne P., Galarneau A., Vioux A. Ionic liquid mediated sol-gel synthesis in the presence of water or formic acid: which synthesis for which material?, Chem. Mater., 24 (2012), 3128-3134.
  • [25] Klingshirn, M.A., Spear, S.K., Holbrey, J.D., Rogers, R.D. Ionic liquids as solvent and solvent additives for the synthesis of sol–gel materials, J. Mater. Chem., 15 (2005) 5174–5180.
  • [26] Karout A., Pierre A. C., Silica xerogels and aerogels synthesized with ionic liquids, J. Non-Cryst. Solids, 353 (2007) 2900-2909.
  • [27] Zhang J., Maa Y., Shi F., Liu L., Deng Y. Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol–gel method, Microporous and Mesoporous Materials, 119 (2009), 97–103.
  • [28] Ekka B., Rout L., Kumar M. K. S. A., Patel R. K., Dash P. Removal efficiency of Pb (II) from aqueous solution by 1-alkyl-3-methylimidazolium bromide ionic liquid mediated mesoporous silica, J. Environ. Chem. Eng., 3(2) (2015), 356-1364.
  • [29] Seraj S., Mirzayi B., Nematollahzadeh A. Engineered maghemite nanoparticles with polyrhodanine for efficient removal of Cr(VI) from water, Environmental Nanotechnology, Monitoring & Management, 10 (2019), 94-103.
  • [30] Maheshwari U., Mathesan B., Gupta S. Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): Kinetic, thermodynamics and mass transfer mechanism, Process Saf. Environ. Prot., 98 (2015), 198-210.
  • [31] Kumar R., Ehsan M., Barakat M. A. Syhthesis and characterization of carbon/AlOOH composite for adsorption of chromium (VI) from synthetic wastewater, J. Ind. Eng. Chem., 20(6) (2014) 4202-4206.
  • [32] Dudu T.E., Sainer M., Alpaslan D., Demirci S. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrilonitril-co-acrylamidopropyl-trimethyl ammonium chloride) based hydrogels, J. Environ. Manage., 161 (2015) 243-251.
  • [33] Bo S., Ren W., Lei C., Xie Y., Cai Y., Wang S., Gao J., Ni Q., Yao J. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(VI) from water, J. Solid State Chem., 262 (2018) 135-141.
  • [34] Hu Z., Cai L., Liang J., Guo X., Li W., Huang Z. Green synthesis of expanded graphite/layered double hydroxides nanocomposites and their application in adsorption removal of Cr(VI) from aqueous solution, J. Clean. Prod.,209 (2019) 1216-1227.
  • [35] Lin Y.-J., Chen J.-J., Cao W.-Z., Persson K. M., Ouyang T., Zhang L., Xie X., Liu F., Li J., Chang C.-T. Novel materials for Cr(VI) adsorption bu magnetic titanium nanotubes coated phosphorene, J. Molec. Liq.,287 (2019) 110826.
Year 2020, Volume: 41 Issue: 1, 281 - 289, 22.03.2020
https://doi.org/10.17776/csj.359471

Abstract

References

  • [1] Liu Y., Guo L., Zhu L., Sun X., Chen J., Removal of Cr (VI) by quaternary ammonium and quaternary phosphonium ionic liquids functionalized silica materials, Chem. Eng. J. 158, (2010) 108-114.
  • [2] World Health Organisation (WHO) sensate, Available at http://www.who.int/water_sanitation_health/dwq/chemicals/chromium.pdf. Retrieved at 15 October (2017).
  • [3] Lin X., Liu J., Wan S., He X., Cui L., Wu G. A novel strategy for Cr (VI) removal from aqueous solution via CYPH@ IL101/chitosan capsule, Int. J. Biol. Macromol., 136 (2019) 35–47.
  • [4] Rawat A. P., Sing D. P. Synergistic action of adsorption and reductive properties of ash derived from distilled Mentha piperita plant waste in removal of Cr(VI) from aqueous solution, Ecotoxicol. Environ. Saf., 176 (2019) 27-33.
  • [5] Zhou L., Duan Y., Xu X. Facile preparation of amine-rich polyamidoamine (PAMAM) gel for highly efficient removal of Cr(VI) ions, Colloids and Surfaces A, 579 (2019), 123685.
  • [6] Shakya A., Agarwal T. Removal of Cr(VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment, J. Mol. Liq., (2019) 111497.
  • [7] Sellami F., Kebiche-Senhadji O., Marais S., Couvrat N., Fatyeyeva K. Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr(VI): Efficiency, stability and selectivity, React. Funct. Polym., 139 (2019) 120-132.
  • [8] Benaissa H., Elouchdi M. A. Removal of copper ions from aqueous solutions by dried sunflower leaves, Chem. Eng. Process., 46 (2007) 614-622.
  • [9] Fu F., Wang Q. Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407-418.
  • [10] Bilal M., Shah J. A., Ashfaq T., Gardazi S. S, Tahir A. A., Pervez A., Haroon H., Mahmood Q. J. Waste biomass adsorbents for copper removal from industrial waste water-a review, J. Hazard. Mater., 262(3) (2013) 322-333.
  • [11] Mahmoud M.E., Hafez O. F., Alrefaay A., Osman M. M. Performance evaluation of hybrid inorganic/organic adsorbents in removal and preconcentration of heavy metals from drinking and industrial waste water, Desalination, 253 (2010) 9-15.
  • [12] Tian Y., Yin P., Qu R., Wang C., Zheng H., Yu Z. Removal of transition metal ions from aqueous solution by adsorption using a novel hybrid material silica gel chemically modified by trithylenetetraminomethylenephosphonic acid, Chem. Eng. J., 162 (2010) 573-579.
  • [13] Gizli N., Arabacı M., Enhanced sorption of Cu(II) ions from aqueous solution by ionic liquid impregnated nano-silica and nano-alumina particles, Chem. Ind. Chem. Eng. Q., 23(2) (2017) 207-216.
  • [14] Peric B., Martí E., Sierra J., Cruañas R., Garau M.A., Recent Advances in Pharmaceutical Sciences II, Munoz-Torrero D., Haro D., Valles J., (Eds). Transworld Research Network. Kerela, India, (2012).
  • [15] Stojanovic A., Keppler B., Ionic liquids as extracting agents for heavy metals, Sep. Sci. Technol., 47 (2012) 183-203.
  • [16] Dong Z., Zhao L. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation, Carbohydr. Polym., 189 (2018), 190-197.
  • [17] Kim B-K., Lee E. J., Kang Y., Lee J-J. Application of ionic liquids for metal dissolution and extraction, J. Ind. Eng. Chem., 61 ( 2017) 388-397.
  • [18] Li Z. L., Lin G., Zhenjiang Z., Ji C., Min Z. S. The preparation of supported ionic liquids (SILs) and their applications in rare metal separation, Science China Chemistry, 55 (2012) 1479-1488.
  • [19] Lemus J., Palomar J., Gilarranz M. A., Rodriguez J. J. Characterization of Supported Ionic Liquid Phase (SILP) materials prepared from different supports, Adsorption, 17 (2011) 561–571.
  • [20] Hung W-C., Fu S-H., Tseng J-J, Chu H., Ko T-H. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method, Chemosphere, 66 (2007) 2142–2151.
  • [21] Dai S., Ju Y. H., Gao H. J., Lin J. S., Pennycook S. J., Barnes C. E. Preparation of silica aerogel using ionic liquids as solvents, Chem Commun., 3 (2000) 243-244.
  • [22] Perchacz M., Donato R. K., Seixas L., Zhigunov A., Konefat R., Serkis-Rodzen M., Benes H. Ionic liquid-silica precursors via solvent-free sol−gel process and their application in epoxy-amine network: a theoretical/experimental study, ACS Appl. Mater. Interfaces, 9 (2017) 16474−16487.
  • [23] Zhou Y., Schattka J. H., Antonietti M. Room- temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique, Nano Letters, 4(3) (2002), 477-481.
  • [24] Viau L.,Neouze M-A., Biolley C., Volland S., Brevet D., Gaveau P., Dieudonne P., Galarneau A., Vioux A. Ionic liquid mediated sol-gel synthesis in the presence of water or formic acid: which synthesis for which material?, Chem. Mater., 24 (2012), 3128-3134.
  • [25] Klingshirn, M.A., Spear, S.K., Holbrey, J.D., Rogers, R.D. Ionic liquids as solvent and solvent additives for the synthesis of sol–gel materials, J. Mater. Chem., 15 (2005) 5174–5180.
  • [26] Karout A., Pierre A. C., Silica xerogels and aerogels synthesized with ionic liquids, J. Non-Cryst. Solids, 353 (2007) 2900-2909.
  • [27] Zhang J., Maa Y., Shi F., Liu L., Deng Y. Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol–gel method, Microporous and Mesoporous Materials, 119 (2009), 97–103.
  • [28] Ekka B., Rout L., Kumar M. K. S. A., Patel R. K., Dash P. Removal efficiency of Pb (II) from aqueous solution by 1-alkyl-3-methylimidazolium bromide ionic liquid mediated mesoporous silica, J. Environ. Chem. Eng., 3(2) (2015), 356-1364.
  • [29] Seraj S., Mirzayi B., Nematollahzadeh A. Engineered maghemite nanoparticles with polyrhodanine for efficient removal of Cr(VI) from water, Environmental Nanotechnology, Monitoring & Management, 10 (2019), 94-103.
  • [30] Maheshwari U., Mathesan B., Gupta S. Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): Kinetic, thermodynamics and mass transfer mechanism, Process Saf. Environ. Prot., 98 (2015), 198-210.
  • [31] Kumar R., Ehsan M., Barakat M. A. Syhthesis and characterization of carbon/AlOOH composite for adsorption of chromium (VI) from synthetic wastewater, J. Ind. Eng. Chem., 20(6) (2014) 4202-4206.
  • [32] Dudu T.E., Sainer M., Alpaslan D., Demirci S. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrilonitril-co-acrylamidopropyl-trimethyl ammonium chloride) based hydrogels, J. Environ. Manage., 161 (2015) 243-251.
  • [33] Bo S., Ren W., Lei C., Xie Y., Cai Y., Wang S., Gao J., Ni Q., Yao J. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(VI) from water, J. Solid State Chem., 262 (2018) 135-141.
  • [34] Hu Z., Cai L., Liang J., Guo X., Li W., Huang Z. Green synthesis of expanded graphite/layered double hydroxides nanocomposites and their application in adsorption removal of Cr(VI) from aqueous solution, J. Clean. Prod.,209 (2019) 1216-1227.
  • [35] Lin Y.-J., Chen J.-J., Cao W.-Z., Persson K. M., Ouyang T., Zhang L., Xie X., Liu F., Li J., Chang C.-T. Novel materials for Cr(VI) adsorption bu magnetic titanium nanotubes coated phosphorene, J. Molec. Liq.,287 (2019) 110826.
There are 35 citations in total.

Details

Journal Section Engineering Sciences
Authors

Merve Arabacı

Nilay Gizli

Publication Date March 22, 2020
Submission Date November 29, 2017
Acceptance Date September 4, 2019
Published in Issue Year 2020Volume: 41 Issue: 1

Cite

APA Arabacı, M., & Gizli, N. (2020). Preparation and Characterization of the Sol-Gel Silica Containing Ionic Liquids as a Potential Adsorbent for the Removal of Cr(VI) Ions from Aqueous Solutions. Cumhuriyet Science Journal, 41(1), 281-289. https://doi.org/10.17776/csj.359471