Research Article
BibTex RIS Cite
Year 2019, Volume: 40 Issue: 3, 723 - 731, 30.09.2019
https://doi.org/10.17776/csj.541338

Abstract

References

  • REFERENCES[1] Sonmez G., Shen C.K.F., Rubin Y. and Wudl F., A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era, Angew. Chem. Int. Ed., 43 (2004) 1498-502.
  • [2] Xu G., Zhao J., Liu J., Cui C., Hou Y. and Kong Y., Electrochemical synthesis and characterization of imidazole-containing polymers, and their electrochromic devices application organic and bioelectrochemistry, J. Electrochem Soc, 160(11), (2013) G149-G155.
  • [3] Kumar A., Welsh D.M., Morvant M.C., Piroux F., Abboud K.A. and Reynolds J.R., Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios, Chem. Mater. 10 (1998) 896–902.
  • [4] Balan A., Gunbas G., Durmus A. and Toppare L., Donor−acceptor polymer with benzotriazole moiety: enhancing the electrochromic properties of the “donor unit”, Chem. Mater. 20 (2008) 7510– 7513.
  • [5] Krebs E. F.C., Electrochromic displays: The new black, Nat. Mater. 7 (2008) 766–767.
  • [6] Yang C., Kim J. Y., Cho S., Lee J. K., Heeger A. J. and Wudl F., Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors, J. Am. Chem. Soc., 130 (2008) 6444−6450.
  • [7] Ma C., Toya M. and Xu C., Flexible electrochromic device based on poly (3,4-(2,2-dimethylpropylenedioxy)thiophene), Electrochim. Acta 54 (2008) 598-605.
  • [8] Soylemez S., Hacioglu S.O., Kesik M., Unay H., Cirpan A. and Toppare L., A novel and effective surface design: conducting polymer/β-cyclodextrin host–guest system for cholesterol biosensor, ACS Appl. Mater. Interfaces, 6 (2014) 18290−18300.
  • [9] Xu Z., Yu D. and Yu M., The synthesis and photoluminescence characteristics of novel 4-aryl substituted thiophene derivatives with bis-diarylacrylonitrile unit, Dyes and Pigments, 95 (2012) 358-364.
  • [10] Ermiş E., Yigit D. and Güllü M., Synthesis of poly(N-alkyl-3,4-dihydrothieno[3,4-b][1,4]oxazine) derivatives and investigation of their supercapacitive performances for charge storage applications, Electrochim. Acta, 90 (2013) 623-633.
  • [11] Mullekom H. A. M., Vekemans J. A. J. M., Havinga E. E. and Meijer E. W., Developments in the chemistry and band gap engineering of donor- acceptor substituted conjugated polymers, Mater. Sci. Eng., R32 (2001) 1–40.
  • [12] Zhang C., Hua C., Wang G., Ouyang M. and Ma C., A novel multichromic copolymer of 1,4-bis(3-hexylthiophen-2-yl)benzene and 3,4-ethylenedioxythiophene prepared via electrocopolymerization, J. Electroanal. Chem., 645 (2010) 50-57.
  • [13] Roncali J., Molecular Engineering of the Band Gap of π‐Conjugated Systems: Facing Technological Applications, Macromol. Rapid Commun., 28 (2007)1761–1775.
  • [14] Gunbas G. and Toppare L., Green as it Gets; Donor‐Acceptor type Polymers as the Key to Realization of RGB Based Polymer Display Devices, Macromol. Symp., 297 (2010) 79-86.
  • [15] Nie, G., Qu, L., Xu J. and Zhang S., Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene, Electrochim. Acta, 53 (2008) 8351−8358.
  • [16] Soylemez S., Hacioglu S. O., Uzun S. D. and Toppare L., A low band gap benzimidazole derivative and its copolymer with 3,4-ethylenedioxythiophene for electrochemical studies. J. Electrochem. Soc., 162 (1), (2015) H6-H14.
  • [17] Aydın A. and Kaya I., Syntheses of novel copolymers containing carbazole and their electrochromic properties, J. Electroanal. Chem., 691 (2013) 1−12.
  • [18] Kuo C.-W., Wu T.-L., Lin Y.-C., Chang J.-K., Chen H.-R. and Wu T.-Y., Copolymers based on 1,3-bis(carbazol-9-yl)benzene and three 3,4-ethylenedioxythiophene derivatives as potential anodically coloring copolymers in high-contrast electrochromic devices, Polymers, 8 (2016) 368-383.
  • [19] Carbas B. B., Novel electrochromic copolymers based on 3-3′-dibromo-2-2′-bithiophene and 3,4 ethylene dioxythiophene, Polymer, 113 (2017) 180-186.
  • [20] Ergun E. G. C., Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers, Chinese J. Polym. Sci., 37 (2019) 28–35.
  • [21] Wu F. I., Shih P. I., Shu C. F., Tung Y. L. and Chi Y., Highly efficient light-emitting diodes based on fluorene copolymer consisting of triarylamine units in the main chain and oxadiazole pendent groups, Macromolecules, 38 (2005) 9028-9036.
  • [22] Lee J. H., Cho H. J., Cho N. S., Hwang D. H., Kang J. M., Lim E. H., Lee I. J. and Shim H. K., Enhanced efficiency of polyfluorene derivatives: Organic–inorganic hybrid polymer light‐emitting diodes, J. Polym. Sci. A: Polym. Chem., 44 (2006) 2943-2954.
  • [23] Carbas B. B. ¸ Kivrak A. and Önal A. M., A new processable electrochromic polymer based on an electron deficient fluorene derivative with a high coloration efficiency, Electrochim. Acta, 58 (2011) 223– 230.
  • [24] Toshima N. and Ihata O., Catalytic synthesis of conductive polypyrrole using iron (III) catalyst and molecular oxygen, Synth. Met., 79 (1996) 165-172.
  • [25] Lee S., Cho M. S. and Nam J. D., New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber, J. Nanosci. Nanotechnol., 8 (2008) 4722-4725.
  • [26] Vaitkuviene A., Kaseta V., Voronovic J., Ramanauskaite G., Biziuleviciene G., Ramanaviciene A. and Ramanavicius A., Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization, J. Hazard Mater., 250 (2013) 167-174.
  • [27] M.-B. Edyta, Siekiera I., Krolikowska A., Donten M. and Nowicka A. M., Combination of copolymer film (PPy-PPyCOOH) and magnetic nanoparticles as an electroactive and biocompatible platform for electrochemical purposes, Electrochim. Acta, 263 (2018) 454-464.
  • [28] Özcan A. and Ilkbas S., Poly(pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive stripping voltammetry, Sens. Actuators B, 215 (2015) 518–524.

Novel Fluorene and Pyrrole Comprising Copolymers: Effect of Copolymer Feed Ratio on Electrochromic and Electrochemical Properties

Year 2019, Volume: 40 Issue: 3, 723 - 731, 30.09.2019
https://doi.org/10.17776/csj.541338

Abstract

Herein, synthesis of two
homopolymers namely, poly-2,2′-(9,9-dioctyl-9h-fluorene-2,7-diyl)bisthiophene
(PBT), poly-pyrrole-3-carboxylic acid (PP3CA) and fluorene and pyrrole
comprising five novel copolymers (CoP1, CoP2, CoP3, CoP4, CoP5) were
electrochemically synthesized. Each electrolytic solution was prepared with
different monomer feed ratios to investigate the effect of comonomer ratio on
electrochromic and electrochemical properties. After synthesis, homopolymers
and copolymers were compared in terms of their electrochemical,
spectroelectrochemical and colorimetry properties. The number of studies on
electrochromic characterization of pristine P3CA group was limited in
literature, hence in this study P3CA was electrochemically inserted into the
polymer chain via copolymerization.CoP1 with 1:1 (BT: P3CA) monomer feed ratio
exhibited the lower optical band gap and red shifted neutral state absorption
compared to PP3CA, additionally light yellow color of PP3CA turned out to be
multichromic for CoP1with the insertion of BT unit via electrocopolymerization.

References

  • REFERENCES[1] Sonmez G., Shen C.K.F., Rubin Y. and Wudl F., A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era, Angew. Chem. Int. Ed., 43 (2004) 1498-502.
  • [2] Xu G., Zhao J., Liu J., Cui C., Hou Y. and Kong Y., Electrochemical synthesis and characterization of imidazole-containing polymers, and their electrochromic devices application organic and bioelectrochemistry, J. Electrochem Soc, 160(11), (2013) G149-G155.
  • [3] Kumar A., Welsh D.M., Morvant M.C., Piroux F., Abboud K.A. and Reynolds J.R., Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios, Chem. Mater. 10 (1998) 896–902.
  • [4] Balan A., Gunbas G., Durmus A. and Toppare L., Donor−acceptor polymer with benzotriazole moiety: enhancing the electrochromic properties of the “donor unit”, Chem. Mater. 20 (2008) 7510– 7513.
  • [5] Krebs E. F.C., Electrochromic displays: The new black, Nat. Mater. 7 (2008) 766–767.
  • [6] Yang C., Kim J. Y., Cho S., Lee J. K., Heeger A. J. and Wudl F., Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors, J. Am. Chem. Soc., 130 (2008) 6444−6450.
  • [7] Ma C., Toya M. and Xu C., Flexible electrochromic device based on poly (3,4-(2,2-dimethylpropylenedioxy)thiophene), Electrochim. Acta 54 (2008) 598-605.
  • [8] Soylemez S., Hacioglu S.O., Kesik M., Unay H., Cirpan A. and Toppare L., A novel and effective surface design: conducting polymer/β-cyclodextrin host–guest system for cholesterol biosensor, ACS Appl. Mater. Interfaces, 6 (2014) 18290−18300.
  • [9] Xu Z., Yu D. and Yu M., The synthesis and photoluminescence characteristics of novel 4-aryl substituted thiophene derivatives with bis-diarylacrylonitrile unit, Dyes and Pigments, 95 (2012) 358-364.
  • [10] Ermiş E., Yigit D. and Güllü M., Synthesis of poly(N-alkyl-3,4-dihydrothieno[3,4-b][1,4]oxazine) derivatives and investigation of their supercapacitive performances for charge storage applications, Electrochim. Acta, 90 (2013) 623-633.
  • [11] Mullekom H. A. M., Vekemans J. A. J. M., Havinga E. E. and Meijer E. W., Developments in the chemistry and band gap engineering of donor- acceptor substituted conjugated polymers, Mater. Sci. Eng., R32 (2001) 1–40.
  • [12] Zhang C., Hua C., Wang G., Ouyang M. and Ma C., A novel multichromic copolymer of 1,4-bis(3-hexylthiophen-2-yl)benzene and 3,4-ethylenedioxythiophene prepared via electrocopolymerization, J. Electroanal. Chem., 645 (2010) 50-57.
  • [13] Roncali J., Molecular Engineering of the Band Gap of π‐Conjugated Systems: Facing Technological Applications, Macromol. Rapid Commun., 28 (2007)1761–1775.
  • [14] Gunbas G. and Toppare L., Green as it Gets; Donor‐Acceptor type Polymers as the Key to Realization of RGB Based Polymer Display Devices, Macromol. Symp., 297 (2010) 79-86.
  • [15] Nie, G., Qu, L., Xu J. and Zhang S., Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene, Electrochim. Acta, 53 (2008) 8351−8358.
  • [16] Soylemez S., Hacioglu S. O., Uzun S. D. and Toppare L., A low band gap benzimidazole derivative and its copolymer with 3,4-ethylenedioxythiophene for electrochemical studies. J. Electrochem. Soc., 162 (1), (2015) H6-H14.
  • [17] Aydın A. and Kaya I., Syntheses of novel copolymers containing carbazole and their electrochromic properties, J. Electroanal. Chem., 691 (2013) 1−12.
  • [18] Kuo C.-W., Wu T.-L., Lin Y.-C., Chang J.-K., Chen H.-R. and Wu T.-Y., Copolymers based on 1,3-bis(carbazol-9-yl)benzene and three 3,4-ethylenedioxythiophene derivatives as potential anodically coloring copolymers in high-contrast electrochromic devices, Polymers, 8 (2016) 368-383.
  • [19] Carbas B. B., Novel electrochromic copolymers based on 3-3′-dibromo-2-2′-bithiophene and 3,4 ethylene dioxythiophene, Polymer, 113 (2017) 180-186.
  • [20] Ergun E. G. C., Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers, Chinese J. Polym. Sci., 37 (2019) 28–35.
  • [21] Wu F. I., Shih P. I., Shu C. F., Tung Y. L. and Chi Y., Highly efficient light-emitting diodes based on fluorene copolymer consisting of triarylamine units in the main chain and oxadiazole pendent groups, Macromolecules, 38 (2005) 9028-9036.
  • [22] Lee J. H., Cho H. J., Cho N. S., Hwang D. H., Kang J. M., Lim E. H., Lee I. J. and Shim H. K., Enhanced efficiency of polyfluorene derivatives: Organic–inorganic hybrid polymer light‐emitting diodes, J. Polym. Sci. A: Polym. Chem., 44 (2006) 2943-2954.
  • [23] Carbas B. B. ¸ Kivrak A. and Önal A. M., A new processable electrochromic polymer based on an electron deficient fluorene derivative with a high coloration efficiency, Electrochim. Acta, 58 (2011) 223– 230.
  • [24] Toshima N. and Ihata O., Catalytic synthesis of conductive polypyrrole using iron (III) catalyst and molecular oxygen, Synth. Met., 79 (1996) 165-172.
  • [25] Lee S., Cho M. S. and Nam J. D., New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber, J. Nanosci. Nanotechnol., 8 (2008) 4722-4725.
  • [26] Vaitkuviene A., Kaseta V., Voronovic J., Ramanauskaite G., Biziuleviciene G., Ramanaviciene A. and Ramanavicius A., Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization, J. Hazard Mater., 250 (2013) 167-174.
  • [27] M.-B. Edyta, Siekiera I., Krolikowska A., Donten M. and Nowicka A. M., Combination of copolymer film (PPy-PPyCOOH) and magnetic nanoparticles as an electroactive and biocompatible platform for electrochemical purposes, Electrochim. Acta, 263 (2018) 454-464.
  • [28] Özcan A. and Ilkbas S., Poly(pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive stripping voltammetry, Sens. Actuators B, 215 (2015) 518–524.
There are 28 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Şerife Özdemir Hacıoğlu 0000-0002-7362-0740

Publication Date September 30, 2019
Submission Date March 18, 2019
Acceptance Date August 5, 2019
Published in Issue Year 2019Volume: 40 Issue: 3

Cite

APA Özdemir Hacıoğlu, Ş. (2019). Novel Fluorene and Pyrrole Comprising Copolymers: Effect of Copolymer Feed Ratio on Electrochromic and Electrochemical Properties. Cumhuriyet Science Journal, 40(3), 723-731. https://doi.org/10.17776/csj.541338