Research Article
BibTex RIS Cite

LiDAR Verilerinden üretilen Kanopi Yükseklik Modeli Yardımıyla Enerji Nakil Hattının Tehlikeli Kısımlarının Belirlenmesi

Year 2019, Volume: 40 Issue: 2, 487 - 492, 30.06.2019
https://doi.org/10.17776/csj.532135

Abstract

LiDAR (Light Detection and Ranging) tekniği özellikle ulaşılması zor ve
global alanlarda, Enerji Nakil Hatları (ENH) gibi tesislerin düşey metrik
değerlerinin belirlenmesi konusunda tercih edilebilir bir yöntem olarak
karşımıza çıkmaktadır. Elektrik Enerjisi ihtiyacının günlük yaşamımızda hayati
bir ihtiyaç halini alması bu tesislerin önemini her geçen gün artırmaktadır.
Tesisinden sonraki aşamada ise, düşey yüksekliklerin tespit edilmesi de
özellikle ormanlık alanlık alanlarda önemli bir sorun olarak karşımıza
çıkmaktadır. Bu amaçla yapılan bu çalışmada, LiDAR verileri kullanılarak
oluşturulan 
Kanopi Yükseklik Modeli(KYM)
yardımıyla
  gerilim telleri altındaki
düşey emniyet sınırlarını ihlal eden bitki örtüsünün metrik değerleri
belirlenmiştir. Çalışma alanı olarak İstanbul ilinin Anadolu yakasında yer alan
Beykoz İlçesi ile Çekmeköy ilçesi arasındaki bölgedeki
  mevcut Enerji Nakil Hattını kapsayacak
şekilde
  450 x150 m2 ‘lik bir alan
seçilmiştir. İlk olarak, Enerji Nakil Hattının LiDAR sınıflandırma teknikleri
ile iletken sınıflandırması yapılmış ve elde edilen yükseklik değerlerinden,
ENH düşey salınım içerisine giren bölgedeki ağaçların ve bitki örtüsünün
tehlikeli sınırları tespit edilmiştir. Elde edilen sonuçlar yersel yöntemler
ile elde edilen yükseklik değerleriyle karşılaştırılmış olup KOH değeri 0.36 m
olarak bulunmuştur.

References

  • Diaz, J.C.F., Carter, W.E., Shrestha R.L. and Glennie, C.L. (2017). Handbook of Satellite Applications, pp 929-980.
  • Li, X. and Guo, Y. (2018). Application of LiDAR technology in power line inspection. IOP Conference Series: Materials Science and Engineering, 382(5).
  • Chen, C., Yang, B., Song, S., Peng, X. and Huang, R. (2018). Automatic clearance anomaly detection for transmission line corridors utilizing UAV-Borne LiDAR data. Remote Sensing, 10(4). DOI: 10.3390/rs10040613
  • Awrangjeb, M., Islam, M. K. and Systems, I. (2016). Classifier-Free Detection of Power Line Pylons From Point Cloud, IV(October), 14–15. DOI: 10.5194/isprs-annals-IV-4-W4-81-2017
  • Ko, C., Remmel, T. K. and Sohn, G. (2012). Mapping tree general using discrete LiDAR and geometric tree metrics, Bosque (Valdivia), 33(3), 29–30. DOI: 10.4067/S0717-92002012000300015
  • Kurinsky, B. H. and Hung, M.C. (2015). Identification and Visualization of Vegetation Encroachments along Power Line Corridors using LiDAR, International Journal of Research in Geography, (IJRG), 1(1), 38–51.
  • Shen, X., Qin, C., Du, Y., Yu, X. and Zhang, R. (2018). An automatic extraction algorithm of high voltage transmission lines from airborne LiDAR point cloud data. Turkish Journal of Electrical Engineering and Computer Sciences, 26(4), 2043–2055. DOI: 10.3906/elk-1801-23
  • Axelsson, P.E. (2000) DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 32, pp. 110–117.
  • Meador, A.J.S. and Parysow, P.F., and Moore, M.M. (2011). A new method for delineating tree patches and assessing spatial reference conditions of ponderosa pine forests in northern Arizona, Restoration Ecology 19.4 (2011): 490-499. DOI: 10.1111/j.1526-100X.2010.00652.x
  • Hodgson, M.E. and Bresnahan, P. (2004) Accuracy of Airborne LiDAR-Derived Elevation: Empirical Assessment and Error Budget, Photogrammetric Engineering and Remote Sensing, 70, 331-339. DOI: 10.14358/PERS.70.3.331
  • Regulation on Electric Power Installations, published in the Official Gazette No. 24246 dated 30 November 2000. http://www.resmigazete.gov.tr/eskiler/2000/11/20001130.

Determination of Dangerous Parts of the Energy Transmission Line by the Canopy Height Model Produced from LiDAR Data

Year 2019, Volume: 40 Issue: 2, 487 - 492, 30.06.2019
https://doi.org/10.17776/csj.532135

Abstract

LiDAR (Light Detection and Ranging) technique is  preferable method to determine vertical
metric values of
  High Voltage Transmission
Lines (HVTL) in global regions and steep land. The importance of these
facilities is increasing day by day because of the necessity of electricity
energy in our daily life. Determination
 
of vertical heights is an important problem especially in forested areas
after construction. In this study, metric values of vegetation which violate
vertical safety limits under voltage wires were determined by using Canopy
Height Model (CHM) using LiDAR data. As a study area 450x150 m
2 was
selected the existing voltage line in the region between Beykoz District and
Çekmeköy located on the Anatolian side of Istanbul. Firstly, it has been made
conductive classification of HVTL that is using LiDAR classification
techniques.
  Also it is determined the
dangerous limits of trees and vegetation in HVTL vertical oscillation. As a
result the comparison of the values of the vertical elevation
  with the local methods and  obtained from the LiDAR data yielded a Root
Mean Square Error (RMSE) value of 0.36m was found.

References

  • Diaz, J.C.F., Carter, W.E., Shrestha R.L. and Glennie, C.L. (2017). Handbook of Satellite Applications, pp 929-980.
  • Li, X. and Guo, Y. (2018). Application of LiDAR technology in power line inspection. IOP Conference Series: Materials Science and Engineering, 382(5).
  • Chen, C., Yang, B., Song, S., Peng, X. and Huang, R. (2018). Automatic clearance anomaly detection for transmission line corridors utilizing UAV-Borne LiDAR data. Remote Sensing, 10(4). DOI: 10.3390/rs10040613
  • Awrangjeb, M., Islam, M. K. and Systems, I. (2016). Classifier-Free Detection of Power Line Pylons From Point Cloud, IV(October), 14–15. DOI: 10.5194/isprs-annals-IV-4-W4-81-2017
  • Ko, C., Remmel, T. K. and Sohn, G. (2012). Mapping tree general using discrete LiDAR and geometric tree metrics, Bosque (Valdivia), 33(3), 29–30. DOI: 10.4067/S0717-92002012000300015
  • Kurinsky, B. H. and Hung, M.C. (2015). Identification and Visualization of Vegetation Encroachments along Power Line Corridors using LiDAR, International Journal of Research in Geography, (IJRG), 1(1), 38–51.
  • Shen, X., Qin, C., Du, Y., Yu, X. and Zhang, R. (2018). An automatic extraction algorithm of high voltage transmission lines from airborne LiDAR point cloud data. Turkish Journal of Electrical Engineering and Computer Sciences, 26(4), 2043–2055. DOI: 10.3906/elk-1801-23
  • Axelsson, P.E. (2000) DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 32, pp. 110–117.
  • Meador, A.J.S. and Parysow, P.F., and Moore, M.M. (2011). A new method for delineating tree patches and assessing spatial reference conditions of ponderosa pine forests in northern Arizona, Restoration Ecology 19.4 (2011): 490-499. DOI: 10.1111/j.1526-100X.2010.00652.x
  • Hodgson, M.E. and Bresnahan, P. (2004) Accuracy of Airborne LiDAR-Derived Elevation: Empirical Assessment and Error Budget, Photogrammetric Engineering and Remote Sensing, 70, 331-339. DOI: 10.14358/PERS.70.3.331
  • Regulation on Electric Power Installations, published in the Official Gazette No. 24246 dated 30 November 2000. http://www.resmigazete.gov.tr/eskiler/2000/11/20001130.
There are 11 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Nuray Baş 0000-0003-2036-6686

Publication Date June 30, 2019
Submission Date February 25, 2019
Acceptance Date June 18, 2019
Published in Issue Year 2019Volume: 40 Issue: 2

Cite

APA Baş, N. (2019). Determination of Dangerous Parts of the Energy Transmission Line by the Canopy Height Model Produced from LiDAR Data. Cumhuriyet Science Journal, 40(2), 487-492. https://doi.org/10.17776/csj.532135