Research Article
BibTex RIS Cite

Toprak Örneklerindeki Propaklor ve Prometrin Herbisitlerinin Sıvı Kromatografisi Analizleri Öncesinde Supramoleküler Çözücü Esaslı Mikroekstraksiyonu

Year 2018, Volume: 39 Issue: 4, 833 - 841, 24.12.2018
https://doi.org/10.17776/csj.452956

Abstract

Supramoleküler çözücüler (SUPRASs), amfifillerin
kendiliğinden bir birleşme prosesi ile meydana getirdiği nano yapılı sıvılardır
ve örnek hazırlama basamağında daha çevre dostu olmaları nedeniyle moleküler
organik çözücülere bir alternatif oluştururlar. Bu çalışmada, toprak
örneklerindeki propaklor ve prometrin herbisitlerinin mikroekstraksiyonu için
SUPRAS esaslı bir analitik metot önerilmektedir. Önerilen metot, 300 mg toprak
numunesinin 300 µL SUPRAS ile 8 dakika boyunca vorteks ile karıştırılmasını,
ardından faz ayrımı için santrifüjlemeyi ve ultraviyole dedektörlü sıvı kromatografisiyle
SUPRAS fazının doğrudan analizini içermektedir. Optimize edilen ekstraksiyon
koşullarında, herbisitler için ekstraksiyon verimleri % 81 ile % 87 arasında
değişim göstermiştir. Metot algılama limitleri, propaklor ve prometrin için
sırasıyla 0.07 µg/g ve 0.01 µg/g olarak bulunmuştur. Herbisitler için bulunan
bağıl standart sapma değerleri gün-içi ve günler-arası tekrarlanabilirlik
olarak sırasıyla %
8.8 ve % 12.1’den daha düşük bulunmuştur. İlgili
herbisitlerin Zonguldak bölgesinden toplanan toprak örneklerinden
mikroekstraksiyonu verimli bir şekilde yapılmıştır. Standart madde ilavesi
yapılan toprak örnekleri için elde edilen geri kazanım değerleri %80 ile %1
08
arasında değişim göstermiştir.

References

  • [1]. Jiménez-Soto J.M., Cárdenas S., Valcárcel M., Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction, Anal. Chim. Acta, 714 (2012) 76–81.
  • [2]. Masiá A., Vásquez K., Campo J., Picó Y., Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Túria River asin, J. Chromatogr. A, 1378 (2015) 19–31.
  • [3]. Wang H., Ding J., Ren N., Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples, Trends Anal. Chem., 75 (2016) 197–208.
  • [4]. Vazquez-Roig P., Picó Y., Pressurized liquid extraction of organic contaminants in environmental and food samples, Trends Anal. Chem., 71 (2015) 55–64.
  • [5]. Asiabi H., Yamini Y., Moradi M., Determination of sulfonylurea herbicides in soil samples via supercritical fluid extraction followed by nanostructured supramolecular solvent microextraction, J. Supercrit. Fluid., 84 (2013) 20–28.
  • [6]. Asensio-Ramos M., Hernández-Borges J., Borges-Miquel T.M., Rodríguez-Delgado M.Á., Ionic liquid-dispersive liquid–liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection, J. Chromatogr. A, 1218 (2011) 4808–4816.
  • [7]. Tang B., Zhang H., Row K.H., Application of deep eutectic solvents in the extraction and separation of target compounds from various samples, J. Sep. Sci., 38 (2015) 1053–1064.
  • [8]. Ballesteros-Gómez A., Sicilia M.D., Rubio S., Supramolecular solvents in the extraction of organic compounds. A review, Anal. Chim. Acta, 677 (2010) 108–130.
  • [9]. Ballesteros-Gómez A., Rubio S., Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants, Anal. Chem., 84 (2011) 342–349.
  • [10]. Caballero-Casero N., Çabuk H., Martínez-Sagarra G., Devesa J.A., Rubio S., Nanostructured alkyl carboxylic acid-based restricted access solvents: Application to the combined microextraction and cleanup of polycyclic aromatic hydrocarbons in mosses, Anal. Chim. Acta, 890 (2015) 124–133.
  • [11]. Alabi A., Caballero-Casero N., Rubio S., Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection, J. Chromatogr. A, 1336 (2014) 23–33.
  • [12]. Caballero-Casero N., Ocak M., Ocak Ü., Rubio S., Quick supramolecular solvent-based microextraction for quantification of low curcuminoid content in food, Anal. Bioanal. Chem., 406 (2014) 2179–2187.
  • [13]. López-Jiménez F.J., Rosales-Marcano M., Rubio S., Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography–tandem mass spectrometry, J. Chromatogr. A, 1303 (2013) 1–8.
  • [14]. Caballo C., Sicilia M.D., Rubio S., Enantioselective analysis of non-steroidal anti-inflammatory drugs in freshwater fish based on microextraction with a supramolecular liquid and chiral liquid chromatography–tandem mass spectrometry, Anal. Bioanal. Chem., 407 (2015) 4721–4731.
  • [15]. Albero B., Sánchez-Brunete C., Donoso A., Tadeo J.L., Determination of herbicide residues in juice by matrix solid-phase dispersion and gas chromatography–mass spectrometry, J. Chromatogr. A, 1043 (2004) 127–133.
  • [16]. Qu J.R., Zhang J.J., Gao Y.F., Yang H., Synthesis and utilisation of molecular imprinting polymer for clean-up of propachlor in food and environmental media, Food Chem., 135 (2012) 1148–1156.
  • [17]. Leyva-Morales J.B., Valdez-Torres J.B., Bastidas-Bastidas P.J., Betancourt-Lozano M., Validation and application of a multi-residue method, using accelerated solvent extraction followed by gas chromatography, for pesticides quantification in soil, J. Chromatogr. Sci., 53 (2015) 1623–1630.
  • [18]. Sánchez-Brunete C., Pérez R.A., Miguel E., Tadeo J.L., Multiresidue herbicide analysis in soil samples by means of extraction in small columns and gas chromatography with nitrogen–phosphorus and mass spectrometric detection, J. Chromatogr. A, 823 (1998) 17–24.
  • [19]. Rodríguez-González N., González-Castro M.J., Beceiro-González E., Muniategui-Lorenzo, S., Prada-Rodríguez, D., Determination of triazine herbicides in seaweeds: Development of a sample preparation method based on matrix solid phase dispersion and solid phase extraction clean-up, Talanta, 121 (2014) 194–198.
  • [20]. Li X., Wang Y., Sun Q., Xu B., Yang Z., Wang X., Molecularly imprinted dispersive solid-phase extraction for the determination of triazine herbicides in grape seeds by high-performance liquid chromatography, J. Chromatogr. Sci., 54 (2016) 871–877.
  • [21]. Rodríguez-González N., González-Castro M.J., Beceiro-González E., Muniategui-Lorenzo S., Development of a matrix solid phase dispersion methodology for the determination of triazine herbicides in mussels, Food Chem., 173 (2015) 391–396.
  • [22]. Zhou J., Chen J., Cheng Y., Li D., Hu F., Li H., Determination of prometryne in water and soil by HPLC–UV using cloud-point extraction, Talanta, 79 (2009) 189–193.

Supramolecular Solvent-Based Microextraction of Propachlor and Prometryn Herbicides in Soil Samples Prior to Liquid Chromatographic Analysis

Year 2018, Volume: 39 Issue: 4, 833 - 841, 24.12.2018
https://doi.org/10.17776/csj.452956

Abstract

Supramolecular solvents (SUPRASs) are the
nano-structured liquids generated from amphiphiles through a self-assembly
process, and constitute an alternative to molecular organic solvents with becoming more environmentally friendly in sample
preparation step. In this study, a SUPRAS-based analytical method
has
been proposed for the microextraction of propachlor and prometryn herbicides in
soil samples. The method involved the vortex mixing of the 300 mg of soil
sample with 300 µL of SUPRAS for 8 min, subsequent centrifugation for the phase
separation, and direct analysis of the SUPRAS phase by liquid chromatography
with ultraviolet detection. Under optimal extraction
conditions, the extraction recoveries for the herbicides ranged from 81 to 87 %.
The method detection limits for propachlor and prometryn were 0.07 and 0.01
μg/g, respectively. Relative standard deviations obtained for the herbicides
were less than 8.8 % and 12.1 % for intra-day and inter-day precisions,
respectively. The microextraction of related herbicides from soil samples
collected from the Zonguldak region was carried out efficiently. The recoveries
obtained from spiked soil samples ranged from
80 to 108
%.

References

  • [1]. Jiménez-Soto J.M., Cárdenas S., Valcárcel M., Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction, Anal. Chim. Acta, 714 (2012) 76–81.
  • [2]. Masiá A., Vásquez K., Campo J., Picó Y., Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Túria River asin, J. Chromatogr. A, 1378 (2015) 19–31.
  • [3]. Wang H., Ding J., Ren N., Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples, Trends Anal. Chem., 75 (2016) 197–208.
  • [4]. Vazquez-Roig P., Picó Y., Pressurized liquid extraction of organic contaminants in environmental and food samples, Trends Anal. Chem., 71 (2015) 55–64.
  • [5]. Asiabi H., Yamini Y., Moradi M., Determination of sulfonylurea herbicides in soil samples via supercritical fluid extraction followed by nanostructured supramolecular solvent microextraction, J. Supercrit. Fluid., 84 (2013) 20–28.
  • [6]. Asensio-Ramos M., Hernández-Borges J., Borges-Miquel T.M., Rodríguez-Delgado M.Á., Ionic liquid-dispersive liquid–liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection, J. Chromatogr. A, 1218 (2011) 4808–4816.
  • [7]. Tang B., Zhang H., Row K.H., Application of deep eutectic solvents in the extraction and separation of target compounds from various samples, J. Sep. Sci., 38 (2015) 1053–1064.
  • [8]. Ballesteros-Gómez A., Sicilia M.D., Rubio S., Supramolecular solvents in the extraction of organic compounds. A review, Anal. Chim. Acta, 677 (2010) 108–130.
  • [9]. Ballesteros-Gómez A., Rubio S., Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants, Anal. Chem., 84 (2011) 342–349.
  • [10]. Caballero-Casero N., Çabuk H., Martínez-Sagarra G., Devesa J.A., Rubio S., Nanostructured alkyl carboxylic acid-based restricted access solvents: Application to the combined microextraction and cleanup of polycyclic aromatic hydrocarbons in mosses, Anal. Chim. Acta, 890 (2015) 124–133.
  • [11]. Alabi A., Caballero-Casero N., Rubio S., Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection, J. Chromatogr. A, 1336 (2014) 23–33.
  • [12]. Caballero-Casero N., Ocak M., Ocak Ü., Rubio S., Quick supramolecular solvent-based microextraction for quantification of low curcuminoid content in food, Anal. Bioanal. Chem., 406 (2014) 2179–2187.
  • [13]. López-Jiménez F.J., Rosales-Marcano M., Rubio S., Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography–tandem mass spectrometry, J. Chromatogr. A, 1303 (2013) 1–8.
  • [14]. Caballo C., Sicilia M.D., Rubio S., Enantioselective analysis of non-steroidal anti-inflammatory drugs in freshwater fish based on microextraction with a supramolecular liquid and chiral liquid chromatography–tandem mass spectrometry, Anal. Bioanal. Chem., 407 (2015) 4721–4731.
  • [15]. Albero B., Sánchez-Brunete C., Donoso A., Tadeo J.L., Determination of herbicide residues in juice by matrix solid-phase dispersion and gas chromatography–mass spectrometry, J. Chromatogr. A, 1043 (2004) 127–133.
  • [16]. Qu J.R., Zhang J.J., Gao Y.F., Yang H., Synthesis and utilisation of molecular imprinting polymer for clean-up of propachlor in food and environmental media, Food Chem., 135 (2012) 1148–1156.
  • [17]. Leyva-Morales J.B., Valdez-Torres J.B., Bastidas-Bastidas P.J., Betancourt-Lozano M., Validation and application of a multi-residue method, using accelerated solvent extraction followed by gas chromatography, for pesticides quantification in soil, J. Chromatogr. Sci., 53 (2015) 1623–1630.
  • [18]. Sánchez-Brunete C., Pérez R.A., Miguel E., Tadeo J.L., Multiresidue herbicide analysis in soil samples by means of extraction in small columns and gas chromatography with nitrogen–phosphorus and mass spectrometric detection, J. Chromatogr. A, 823 (1998) 17–24.
  • [19]. Rodríguez-González N., González-Castro M.J., Beceiro-González E., Muniategui-Lorenzo, S., Prada-Rodríguez, D., Determination of triazine herbicides in seaweeds: Development of a sample preparation method based on matrix solid phase dispersion and solid phase extraction clean-up, Talanta, 121 (2014) 194–198.
  • [20]. Li X., Wang Y., Sun Q., Xu B., Yang Z., Wang X., Molecularly imprinted dispersive solid-phase extraction for the determination of triazine herbicides in grape seeds by high-performance liquid chromatography, J. Chromatogr. Sci., 54 (2016) 871–877.
  • [21]. Rodríguez-González N., González-Castro M.J., Beceiro-González E., Muniategui-Lorenzo S., Development of a matrix solid phase dispersion methodology for the determination of triazine herbicides in mussels, Food Chem., 173 (2015) 391–396.
  • [22]. Zhou J., Chen J., Cheng Y., Li D., Hu F., Li H., Determination of prometryne in water and soil by HPLC–UV using cloud-point extraction, Talanta, 79 (2009) 189–193.
There are 22 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Gözde Dursun

Elif Yıldız

Hasan Çabuk 0000-0001-9476-0673

Publication Date December 24, 2018
Submission Date August 13, 2018
Acceptance Date October 27, 2018
Published in Issue Year 2018Volume: 39 Issue: 4

Cite

APA Dursun, G., Yıldız, E., & Çabuk, H. (2018). Supramolecular Solvent-Based Microextraction of Propachlor and Prometryn Herbicides in Soil Samples Prior to Liquid Chromatographic Analysis. Cumhuriyet Science Journal, 39(4), 833-841. https://doi.org/10.17776/csj.452956