Mercury based copper oxide layered high temperature superconductor,
which consists of superconductor–insulator–superconductor (SIS) layers, can be
considered as a stack of nearly ideal, intrinsic Josephson junctions (IJJ). The
SIS junction, where the electrical field is confined, topologically resembles a
parallel-plate capacitor. As is known, the coupling between junctions in superconductors
is capacitive. Hence, the determination of the specific capacitance (Cs) of the IJJ at the
superconducting state has a crucial importance in order to give information
about superconductivity mechanism. In this study, the Cs values of the investigated sample have been
calculated by means of the critical current density, Jcand plasma frequency, that have been obtained from
magnetic measurements taken at the below temperatures than the critical
transition temperature, Tc.
Moreover, Cs values at superconducting
temperature have been compared to that of the normal temperature.
[3]. Klapwijk T.M., Dieleman P., and de Graauw M.W.M., Pushing the operating range of SIS mixers into the THz regime, Supercond. Sci.Technol., vol. 10, no. 12 (1997) 876–879.
[4]. Dolata R., Scherer H., Zorin A. B., and Niemeyer J., Single-charge devices with ultrasmall Nb/AlOx /Nb trilayer Josephson junctions, J. Appl.Phys., vol. 97, no. 5, (2005) 54501.
[5]. Yadranjee Aghdam P., Rashid H., Pavolotsky A., Desmaris V.,. Meledin D. and Belitsky V., Specific Capacitance Dependence on the Specific Resistance in Nb/Al–AlOx/Nb Tunnel Junctions, IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5 (2017).
[6]. Özdemir Z. G., Aslan Ö. and Onbaslı Ü., Terahertz oscillations in mercury cuprate superconductors, Pramana-J. Phys. 73(4) (2009) 755-763.
[7]. Machida M. and Tachiki M., Terahertz electromagnetic wave emission by using intrinsic Josephson junctions of high-Tc superconductors, Curr. Appl. Phys., 341 (2001).
[8]. Adhikari S. K. et al., Superconductivity as a Bose-Einstein Condensation?, Physica C, , 233 (2000) 341-348.
[9]. Almaas E. and Stroud D., Dynamics of a Josephson array in a resonant cavity, Phys. Rev. B 65 (2002) 134502.
[10]. Tornes I. and Stroud D., Possibility of c-axis voltage steps for a cuprate superconductor in a resonant cavity, Phys. Rev. B 68, (2003) 052512.
[11]. Tornes I. and Stroud D., Long Josephson junction in a resonant cavity, Phys. Rev. B 71, (2005) 144503.
[12]. Anderson P.W., c-Axis Electrodynamics as Evidence for the Interlayer Theory of High-Temperature Superconductivity, Science 279, (1998) 1196.
[13]. Aslan Çataltepe Ö., New method to forecast the optimum lateral size for mesa structure in superconductors International Journal of Modern Physics B, Vol. 30, No. 26 (2016) 1-9.
[14]. Aslan Ö., Güven Özdemir Z., Keskin S.S. and Onbaşlı Ü., The chaotic points and XRD analysis of Hg-based superconductors, Journal of Physics: Conference Series, 153 (2009)1-9.
[15]. Josephson, B.D., Possible new effects in superconductive tunnelling, Physics Letters, 1, (1962) 251.
[16]. Pederson, N.F., Solitons in Josephson transmission lines, in Solitons, S.E. Trullinger, V.E. Zakharov, and V.L. Prokovsky, eds., North-Holland, Amsterdam (1986).
[17]. Riazi N., Dynamics of solitons in inhomogeneous Josephson junctions, International Journal of Theoretical Physics January Volume 35, Issue 1, (1996) 101–113.
[19]. Jung P., Nonlienar effects in Superconducting Quantum Interference Meta Atoms, Scientific Publishing, pp 41 (2014).
[20]. Güven Özdemir Z., Aslan Çataltepe Ö., Onbaşlı Ü., Impedance and dielectric properties of mercury cuprate at nonsuperconducting state, International Journal of Modern Physics B, 29 (2015) 1550205.
[22]. Watanabe M., Haviland D. B., Small-Capacitance Josephson Junctions: One-Dimensional Arrays and Single Junctions, Condensed Matter, Mesoscale and Nanoscale Physics, (2003). arXiv:cond-mat/0301340v1.
[23]. Gustafsson D., Bauch T., Nawaz S., Mumtaz M., Signorello G., Lombardi F., Low capacitance HTS junctions for single electron transistors, Physica C 470 (2010) pp. S18
Süperiletken-yalıtkan-süperiletken (SYS)
katmanlardan oluşan cıva bazlı bakır oksit katmanlı yüksek sıcaklık
süperiletkenleri neredeyse ideal, asli Josephson kavşakları dizisi olarak göz
önüne alınabilir. Elektrik alanı hapseden bir SYS kavşağı, topolojik olarak
paralel plakalı bir kapasitöre benzer. Bilindiği üzere, süperiletkenlerdeki
kavşaklar arasındaki kuplaj kapasitiftir. Bundan dolayı, süperiletken durumda
özgül kapasitans, Cs’nin
tespiti süperiletkenlik mekanizması hakkında bilgi elde etmek için çok büyük
bir öneme sahiptir. Bu çalışmada, incelenen örneğin Csdeğerleri kritik geçiş sıcaklığı olan Tc’den daha düşük
sıcaklıklarda yapılan manyetik ölçümlerden elde edilen kritik akım yoğunluğu, Jc ve plazma frekansı değerleri
aracılığıyla elde edildi. Ayrıca süperiletken sıcaklıkta Cs değerleri normal durumdaki Cs değerleriyle de karşılaştırılmıştır.
[3]. Klapwijk T.M., Dieleman P., and de Graauw M.W.M., Pushing the operating range of SIS mixers into the THz regime, Supercond. Sci.Technol., vol. 10, no. 12 (1997) 876–879.
[4]. Dolata R., Scherer H., Zorin A. B., and Niemeyer J., Single-charge devices with ultrasmall Nb/AlOx /Nb trilayer Josephson junctions, J. Appl.Phys., vol. 97, no. 5, (2005) 54501.
[5]. Yadranjee Aghdam P., Rashid H., Pavolotsky A., Desmaris V.,. Meledin D. and Belitsky V., Specific Capacitance Dependence on the Specific Resistance in Nb/Al–AlOx/Nb Tunnel Junctions, IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5 (2017).
[6]. Özdemir Z. G., Aslan Ö. and Onbaslı Ü., Terahertz oscillations in mercury cuprate superconductors, Pramana-J. Phys. 73(4) (2009) 755-763.
[7]. Machida M. and Tachiki M., Terahertz electromagnetic wave emission by using intrinsic Josephson junctions of high-Tc superconductors, Curr. Appl. Phys., 341 (2001).
[8]. Adhikari S. K. et al., Superconductivity as a Bose-Einstein Condensation?, Physica C, , 233 (2000) 341-348.
[9]. Almaas E. and Stroud D., Dynamics of a Josephson array in a resonant cavity, Phys. Rev. B 65 (2002) 134502.
[10]. Tornes I. and Stroud D., Possibility of c-axis voltage steps for a cuprate superconductor in a resonant cavity, Phys. Rev. B 68, (2003) 052512.
[11]. Tornes I. and Stroud D., Long Josephson junction in a resonant cavity, Phys. Rev. B 71, (2005) 144503.
[12]. Anderson P.W., c-Axis Electrodynamics as Evidence for the Interlayer Theory of High-Temperature Superconductivity, Science 279, (1998) 1196.
[13]. Aslan Çataltepe Ö., New method to forecast the optimum lateral size for mesa structure in superconductors International Journal of Modern Physics B, Vol. 30, No. 26 (2016) 1-9.
[14]. Aslan Ö., Güven Özdemir Z., Keskin S.S. and Onbaşlı Ü., The chaotic points and XRD analysis of Hg-based superconductors, Journal of Physics: Conference Series, 153 (2009)1-9.
[15]. Josephson, B.D., Possible new effects in superconductive tunnelling, Physics Letters, 1, (1962) 251.
[16]. Pederson, N.F., Solitons in Josephson transmission lines, in Solitons, S.E. Trullinger, V.E. Zakharov, and V.L. Prokovsky, eds., North-Holland, Amsterdam (1986).
[17]. Riazi N., Dynamics of solitons in inhomogeneous Josephson junctions, International Journal of Theoretical Physics January Volume 35, Issue 1, (1996) 101–113.
[19]. Jung P., Nonlienar effects in Superconducting Quantum Interference Meta Atoms, Scientific Publishing, pp 41 (2014).
[20]. Güven Özdemir Z., Aslan Çataltepe Ö., Onbaşlı Ü., Impedance and dielectric properties of mercury cuprate at nonsuperconducting state, International Journal of Modern Physics B, 29 (2015) 1550205.
[22]. Watanabe M., Haviland D. B., Small-Capacitance Josephson Junctions: One-Dimensional Arrays and Single Junctions, Condensed Matter, Mesoscale and Nanoscale Physics, (2003). arXiv:cond-mat/0301340v1.
[23]. Gustafsson D., Bauch T., Nawaz S., Mumtaz M., Signorello G., Lombardi F., Low capacitance HTS junctions for single electron transistors, Physica C 470 (2010) pp. S18
Aslan Çataltepe, Ö. (2018). The Determination of the Specific Capacitance of Mercury Based Copper Oxide Layered Superconductor at Superconducting State. Cumhuriyet Science Journal, 39(3), 766-770. https://doi.org/10.17776/csj.427219