Research Article
BibTex RIS Cite

Decontamination of Liquid Radioactive Wastes Using Clay Minerals

Year 2018, Volume: 39 Issue: 3, 628 - 634, 30.09.2018
https://doi.org/10.17776/csj.395916

Abstract

The rapid increase in the use of nuclear energy
and radioisotopes has necessitated the development of effective and economic
methods for the decontamination of radioactive wastes. In this study, the
decontamination of low-level radioactive wastes containing 137Cs
radioisotope were investigated by using clay minerals. The clay samples used as
activity absorber materials  were
obtained from the clay deposits in the various regions of Turkey (Adana, Konya,
Diyarbakır).The columns input and output concentrations were determined with
radiometric methods by using a  gamma (
g) spectrometer. According to the results of this investigation,
“smectite” type Turkey clays were found to be suitable for the decontamination
of radioactive wastes containing radioactive cesium.

References

  • [1]. Yıldırım M. and Örnek İ., Enerjide son seçim: Nükleer enerji, Gaziantep University Journal of Social Sciences. 6-1 (2007) 32-44.
  • [2]. Fox C.H., Radioactive wastes. US Atomic Energy Commission, Division of Technical Information; 1965.
  • [3]. Manning W. M., Radioactive Wastes: Their Treatment and Disposal. Journal of the American Chemical Society, 84-2, (1962) 315-315.
  • [4]. International Atomic Energy Agency, The Management of Radioactive Wastes Produced by Radioisotope Users, Safety Series. 1965, No.12, IAEA, Vienna. Available at:https://gnssn-qa.iaea.org/Superseded%20Safety%20Standards/Safety_Series_012_1965.pdf. (Sample reference of online book chapters found in websites).
  • [5]. Senel S. and Senvar C., Decontamination of radioactive wastes by ion exchange. ChimicaActaTurcica, 9-1, (1981) 149-161.
  • [6]. Kunin R. and Preuss A.F., Characterization of a boron-specific ion exchange resin. Industrial & Engineering Chemistry Product Research and Development, 3-4, (1964) 304-306.
  • [7]. International Atomic Energy Agency, Operation And Control Of Ion Exchange Process For Treatment Of Radioactive Wastes. Technical Report Series,78 (1967), IAEA, Vienna.
  • [8]. Pauling L., The sizes of ions and the structure of ionic crystals. Journal of the American Chemical Society.49-3, (1927) 765-790.
  • [9]. Hendricks S. B., Lattice structure of clay minerals and some properties of clays. The Journal of Geology, 50-3, (1942) 276-290.
  • [10]. Grim R. E., Modern concepts of clay materials. The Journal of Geology, 50-3, (1942) 225-275.
  • [11]. Bacon R. C., A Study of the Laws Governing the Cation-exchanging Properties of a Precipitated Aluminum Silicate. The Journal of Physical Chemistry, 40-6, (1936) 747-61.
  • [12]. Kressman T. R., Ion exchange resin membranes and resin-impregnated filter paper. Nature, 1950 165-4197, (1950) 568-568.
  • [13]. Kunin, R. and McGarvey F.X. Ion Exchange, Industrial & Engineering Chemistry, 45-1, (1953) 83-88.
  • [14]. Ayres J. A., Treatment of radioactive waste by ion exchange. Industrial &Engineering Chemistry, 43-7, (1951) 1526-31.
  • [15]. Loewenschuss H., Metal-ferrocyanide Complexes for the Decontamination of Cesium from Aqueous Radioactive Waste. Radioactive Waste Management, 2-4 (1982) 327-341.
  • [16]. Lacy W.J., Decontamination of radioactively contaminated water by slurrying with clay. Industrial & Engineering Chemistry, 46-5, (1954)1061-1065.
  • [17]. Rani R.D. and Sasidhar P., Sorption of cesium on clay colloids: kinetic and thermodynamic studies. Aquatic geochemistry, 18-4, (2012) 281-96.
  • [18]. Vieillard P., Ramırez S., Bouchet A., Cassagnabere A., Meunier A., Jacquot E., Alteration of the Callovo-Oxfordian clay from Meuse-Haute Marne Underground Laboratory (France) by alkaline solution: II. Modelling of mineral reactions. Applied Geochemistry,19-11, (2004) 1699-1709.
  • [19]. Pekarek, V. and Milan M., Historical Background of Inorganic Ion Exchangers, their Classification, and Present Status. Inorganic Ion Exchangers in Chemical Analysis (eds. M. Qureshi and KG Varshney), CRC Press, Boca Raton, FL, 1991: pp 1-32.
  • [20]. Van Olphen H. and Fripiar J. J., Data Handbook for Clay Materials and Other Non-Metallic Minerals. Soil Science,131-1, (1981) 62-62.
  • [21]. Van der Marel H. W. and.Beutelspacher H., Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier Publishing Company, (1976) pp 404.
  • [22]. Brindley G. W. and Brown G., Quantitative X-ray mineral analysis of clays. Crystal structures of clay minerals and their X-ray identification, 5-1, (1980) 411-438.
  • [23]. Brown, G., and Brindley, G. W. (Eds.), Crystal structures of clay minerals and their X-ray identification, London: Mineralogical Society, Vol. 5, (1980) pp. 305-360.
  • [24]. Grim R. E., Clay Mineralogy. Soil Science, 76-4, (1953) 317-327.
  • [25]. Kamel N. and Navratil J., Migration of 134Cs in unsaturated soils at a site in Egypt. Journal of radioanalytical and nuclear chemistry. 254-3, (2002) 421-430.
  • [26]. Wahlberg J. S. and Fishman M. J., Adsorption of cesium on clay minerals. US Government Printing Office; 1962. Washington. Available at: https://pubs.usgs.gov/bul/1140a/report.pdf
  • [27]. Read D., Rabey B., Black S., Glasser F.P., Grigg C., Street A., Implementation of a strategy for managing radioactive scale in the China Clay industry. Minerals engineering. 17-2, (2004) 293-304.

Sıvı Radyoaktif Atıkların Kil Mineralleri ile Aktiviteden Arındırılması

Year 2018, Volume: 39 Issue: 3, 628 - 634, 30.09.2018
https://doi.org/10.17776/csj.395916

Abstract

Nükleer enerji ve radyoizotopların kullanımındaki hızlı artış,
radyoaktif atıkların aktiviteden arıtılması için etkili ve ekonomik yöntemler
geliştirilmesini gerektirmektedir. Bu çalışmada, 137Cs izotopunu
içeren düşük aktiviteli radyoaktif atıkların, killer yardımıyla aktiviteden
arındırılması incelenmiştir.  Aktivite
tutucu materyal olarak kullanılan kil örnekleri Türkiye’nin çeşitli
yörelerindeki (Adana, Konya, Diyarbakır) kil yataklarından sağlanmıştır. Kolon
giriş ve çıkış derişimleri,  gama (
g) spektrometresi kullanılarak radyometrik
yöntemle saptanmıştır. Bu araştırma sonuçlarına göre “smektit” türündeki
Türkiye killer radyosezyum içeren radyoaktif atıkların arıtılması için
elverişli olduğu bulunmuştur.

References

  • [1]. Yıldırım M. and Örnek İ., Enerjide son seçim: Nükleer enerji, Gaziantep University Journal of Social Sciences. 6-1 (2007) 32-44.
  • [2]. Fox C.H., Radioactive wastes. US Atomic Energy Commission, Division of Technical Information; 1965.
  • [3]. Manning W. M., Radioactive Wastes: Their Treatment and Disposal. Journal of the American Chemical Society, 84-2, (1962) 315-315.
  • [4]. International Atomic Energy Agency, The Management of Radioactive Wastes Produced by Radioisotope Users, Safety Series. 1965, No.12, IAEA, Vienna. Available at:https://gnssn-qa.iaea.org/Superseded%20Safety%20Standards/Safety_Series_012_1965.pdf. (Sample reference of online book chapters found in websites).
  • [5]. Senel S. and Senvar C., Decontamination of radioactive wastes by ion exchange. ChimicaActaTurcica, 9-1, (1981) 149-161.
  • [6]. Kunin R. and Preuss A.F., Characterization of a boron-specific ion exchange resin. Industrial & Engineering Chemistry Product Research and Development, 3-4, (1964) 304-306.
  • [7]. International Atomic Energy Agency, Operation And Control Of Ion Exchange Process For Treatment Of Radioactive Wastes. Technical Report Series,78 (1967), IAEA, Vienna.
  • [8]. Pauling L., The sizes of ions and the structure of ionic crystals. Journal of the American Chemical Society.49-3, (1927) 765-790.
  • [9]. Hendricks S. B., Lattice structure of clay minerals and some properties of clays. The Journal of Geology, 50-3, (1942) 276-290.
  • [10]. Grim R. E., Modern concepts of clay materials. The Journal of Geology, 50-3, (1942) 225-275.
  • [11]. Bacon R. C., A Study of the Laws Governing the Cation-exchanging Properties of a Precipitated Aluminum Silicate. The Journal of Physical Chemistry, 40-6, (1936) 747-61.
  • [12]. Kressman T. R., Ion exchange resin membranes and resin-impregnated filter paper. Nature, 1950 165-4197, (1950) 568-568.
  • [13]. Kunin, R. and McGarvey F.X. Ion Exchange, Industrial & Engineering Chemistry, 45-1, (1953) 83-88.
  • [14]. Ayres J. A., Treatment of radioactive waste by ion exchange. Industrial &Engineering Chemistry, 43-7, (1951) 1526-31.
  • [15]. Loewenschuss H., Metal-ferrocyanide Complexes for the Decontamination of Cesium from Aqueous Radioactive Waste. Radioactive Waste Management, 2-4 (1982) 327-341.
  • [16]. Lacy W.J., Decontamination of radioactively contaminated water by slurrying with clay. Industrial & Engineering Chemistry, 46-5, (1954)1061-1065.
  • [17]. Rani R.D. and Sasidhar P., Sorption of cesium on clay colloids: kinetic and thermodynamic studies. Aquatic geochemistry, 18-4, (2012) 281-96.
  • [18]. Vieillard P., Ramırez S., Bouchet A., Cassagnabere A., Meunier A., Jacquot E., Alteration of the Callovo-Oxfordian clay from Meuse-Haute Marne Underground Laboratory (France) by alkaline solution: II. Modelling of mineral reactions. Applied Geochemistry,19-11, (2004) 1699-1709.
  • [19]. Pekarek, V. and Milan M., Historical Background of Inorganic Ion Exchangers, their Classification, and Present Status. Inorganic Ion Exchangers in Chemical Analysis (eds. M. Qureshi and KG Varshney), CRC Press, Boca Raton, FL, 1991: pp 1-32.
  • [20]. Van Olphen H. and Fripiar J. J., Data Handbook for Clay Materials and Other Non-Metallic Minerals. Soil Science,131-1, (1981) 62-62.
  • [21]. Van der Marel H. W. and.Beutelspacher H., Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier Publishing Company, (1976) pp 404.
  • [22]. Brindley G. W. and Brown G., Quantitative X-ray mineral analysis of clays. Crystal structures of clay minerals and their X-ray identification, 5-1, (1980) 411-438.
  • [23]. Brown, G., and Brindley, G. W. (Eds.), Crystal structures of clay minerals and their X-ray identification, London: Mineralogical Society, Vol. 5, (1980) pp. 305-360.
  • [24]. Grim R. E., Clay Mineralogy. Soil Science, 76-4, (1953) 317-327.
  • [25]. Kamel N. and Navratil J., Migration of 134Cs in unsaturated soils at a site in Egypt. Journal of radioanalytical and nuclear chemistry. 254-3, (2002) 421-430.
  • [26]. Wahlberg J. S. and Fishman M. J., Adsorption of cesium on clay minerals. US Government Printing Office; 1962. Washington. Available at: https://pubs.usgs.gov/bul/1140a/report.pdf
  • [27]. Read D., Rabey B., Black S., Glasser F.P., Grigg C., Street A., Implementation of a strategy for managing radioactive scale in the China Clay industry. Minerals engineering. 17-2, (2004) 293-304.
There are 27 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Mehmet Tekdal

Publication Date September 30, 2018
Submission Date February 16, 2018
Acceptance Date June 27, 2018
Published in Issue Year 2018Volume: 39 Issue: 3

Cite

APA Tekdal, M. (2018). Decontamination of Liquid Radioactive Wastes Using Clay Minerals. Cumhuriyet Science Journal, 39(3), 628-634. https://doi.org/10.17776/csj.395916

Cited By