Research Article
BibTex RIS Cite

The Investigation of the Effects of Chlorpyrifos and 2,4-Dichlorophenoxyacetic Acid Application on Bovine Liver Catalase Activity

Year 2018, Volume: 39 Issue: 3, 615 - 620, 30.09.2018
https://doi.org/10.17776/csj.348453

Abstract

In
this study, it was investigated whether different concentrations of
organophosphate insecticide chlorpyrifos (CPF) and systemic herbicide
2,4-dichlorophenoxyacetic acid (2,4-D) 
on bovine liver catalase (CAT) activity cause any inhibitions or
activations. For this purpose, 25, 50, 100, 250 and 500 ppm concentrations of
CPF and 2,4-D were used. Following the applications of all tested
concentrations of the both pesticides, the CAT activity elevated. Under the
exposure of 25, 50, 100, 250 and 500 ppm concentrations, % CAT activity
increases were calculated as 10.0; 6.2; 4.6; 6.9 and 6.0 in CPF apllications,
while these increases were calculated as 13.1; 10.3; 17.0; 24.4 and 18.8 in
2,4-D applications, respectively. The present research indicated the elevations
in CAT activity with 2,4-D were higher compared to CPF. This means that 2,4-D
may have increased hydrogen peroxide production more than CPF.

References

  • [1]. Israel B., Common Insecticide May Harm Boys’ Brains More Than Girls. Scientific American 2012; August 21.
  • [2]. Loomis D., Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid, The Lancet Oncology 2015; 16(8): 891-892.
  • [3]. The National Institute for Occupational Safety and Health (NIOSH), The Effects of Workplace Hazards on Male Reproductive Health 2014; Accessed date: November 2017.
  • [4]. Banerjee B.D., Seth V., Ahmed R.S., Pesticide-induced oxidative stress: perspectives and trends, Rev. Environ. Health, 2001; 16: 1–40.
  • [5]. Attia, A.A., ElMazoudy, R.H., Nahla S. El-Shenawy, N.S., Antioxidant role of propolis extract against oxidative damage of testicular tissue induced by insecticide chlorpyrifos in rats, Pesticide Biochemistry and Physiology, 2012; 103: 87–93.
  • [6]. Halliwell B., Gutteridge J. M. C., Free Radicals In Biology And Medicine. Third Edition, Oxford University Press., New York, 1999.
  • [7]. Chelikani P., Fita I., Loewen P.C., Diversity of structures and properties among catalases, Cell Mol Life Sci. 2004; 61 (2): 192–208.
  • [8]. Gaetani G., Ferraris A., Rolfo M., Mangerini R., Arena S., Kirkman H., Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996; 87 (4): 1595–9.
  • [9]. Jardim A.N.O., Caldas E.D., Brazilian monitoring programs for pesticide residues in food-Results from 2001 to 2010, Food Control, 2012; 25: 607–616.
  • [10]. Lozowicka B., Kaczynski P., Paritova A.E., Kuzembekova G.B., Abzhalieva A.B., Sarsembayeva N.B., Alihan K., Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides, Food and Chemical Toxicology, 2014; 64: 238–248.
  • [11]. Skretteberg L.G., Lyran B., Holen B., Jansson A., Fohgelberg P., Siivinen K., Andersen J.H., Jensen B.H., Pesticide residues in food of plant origin from Southeast Asia-A Nordic Project, Food Control, 2015; 51: 225–235.
  • [12]. Liu Y., Li S., Ni Z., Qu M., Zhong D., Ye C., Fubin Tang pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils, Science of the Total Environment, 2016; 542: 620–628.
  • [13]. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurements with the folin phenol reagent, The Journal of Biological Chemistry, 1951; 193: 265–275.
  • [14]. Lartillot S., Kadziora P., Athios A., Purification and characterization of new fungal catalase, Prep Biochem, 1988; 18(3): 241–246.
  • [15]. Bergmeyer H.U., In: Bergmeyer, HU. (Ed.), Methods of Enzymatic Analysis. 2nd ed, vol.1., Academic press, New York, USA, 1974; 438 p.
  • [16]. Tukel S.S., Alptekin O., Immobilization and kinetics of catalase onto magnesium silicate, Process Biochemistry, 2004; 39: 2149–2155.
  • [17]. Karadag H., Bilgin R., Effect of cyprodinil and fludioxonil pesticides on human superoxide dismutase, Asian Journal of Chemistry, 2010; 22(10): 8147-8154.
  • [18]. John S., Kale M., Rathore N., Bhatnagar D., Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes, The Journal of Nutritional Biochemistry, 2001; 12(9): 500–504.
  • [19]. [19] Ritola O., Livingstone D.R., Peters L.D., Lindstrom-Seppa P., Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water, Aquaculture 2002; 210: 1–19.
  • [20]. Karadag H., Ozhan F., Effect of cyprodinil and fludioxonil pesticides on bovine liver Catalase activity, Biotechnology & Biotechnological Equipment, 2015; 29(1): 40-44.
  • [21]. Karadag H. and Uluca H., Effect of deltamethrin and alpha cypermethrin pesticides on bovine liver catalase activity, Fresenius Environmental Bulletin, 2015; 24(11): 3562-3566.
  • [22]. Karadag H., Kaplan F., Effect of lambda cyhalothrin and fenthion pesticides on bovine liver catalase activity, Fresenius Environmental Bulletin, 2016; 25(8): 3012-3016.
  • [23]. Cacciatore L.C., Nemirovsky S.I., Guerrero N.R.V., Cochón A.C., Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus, Aquatic Toxicology, 2015; 167: 12–19.
  • [24]. Wu H., Zhang R., Liu J., Guo Y., Ma E., Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: Acrididae), Chemosphere, 2011; 83: 599–604.
  • [25]. Kaur R., Sandhu H.S., In vivo changes in antioxidant system and protective role of selenium in chlorpyrifos-induced subchronic toxicity in bubalus bubalis, Environmental Toxicology and Pharmacology 2008; 26: 45–48.
  • [26]. Jin Y., Liu Z., Peng T., Fu Z., The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress and İmmunotoxicity, Fish & Shellfish Immunology, 43 (2015) 405-414.
  • [27]. Aly N., EL-Gendy K., Mahmoud F., El-Sebae A.K, Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice, Pesticide Biochemistry and Physiology, 97 (2010) 7–12.
  • [28]. Oruc E.O., Sevgiler Y., Uner N., Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl, Comparative Biochemistry and Physiology, Part C 137 (2004) 43–51.
  • [29]. Atamaniuk T.M., Kubrak O.I., Storey K.B., Lushchak V.I., Oxidative stress as a Mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills, Ecotoxicology 22 (2013) 1498–1508.

Klorpirifos ve 2,4-Diklorofenoksiasetik Asit Uygulamasının Sığır Karaciğer Katalaz Aktivitesi Üzerine Etkilerinin İncelenmesi

Year 2018, Volume: 39 Issue: 3, 615 - 620, 30.09.2018
https://doi.org/10.17776/csj.348453

Abstract

Bu
çalışmada, organofosfat insektisit klorpirifos (CPF)  ve sistemik herbisit 2,4-diklorofenoksiasetik
asit (2,4-D)’nin farklı konsantrasyonlarının, sığır karaciğer katalazı (CAT)
üzerine herhangi bir inhibisyon ya da aktivasyona neden olup olmadığı araştırılmıştır.
Bu amaçla CPF ve 2,4-D’nin 25, 50, 100, 250 ve 500 ppm konsantrasyonları
kullanılmıştır. Her iki pestisitin test edilen tüm konsantrasyonlarının
uygulanmasını takiben CAT aktivitesi artmıştır. 25, 50, 100, 250 ve 500 ppm
konsantrasyonların etkisinde % CAT aktivite artışları CPF uygulamalarında
sırasıyla 10.0; 6.2; 4.6; 6.9 ve 6.0 olarak hesaplanmışken bu artışlar 2,4-D
uygulamalarında sırasıyla 13.1; 10.3; 17.0; 24.4 ve 18.8 olarak hesaplanmıştır.
Sunulan araştırma CAT aktivitesi artışlarının CPF’ye oranla 2,4-D
uygulamalarında daha yüksek olduğunu göstermektedir. Bu 2,4-D’nin hidrojen
peroksit üretimini CPF’ye göre daha fazla arttırmış olabileceği anlamına
gelmektedir.

References

  • [1]. Israel B., Common Insecticide May Harm Boys’ Brains More Than Girls. Scientific American 2012; August 21.
  • [2]. Loomis D., Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid, The Lancet Oncology 2015; 16(8): 891-892.
  • [3]. The National Institute for Occupational Safety and Health (NIOSH), The Effects of Workplace Hazards on Male Reproductive Health 2014; Accessed date: November 2017.
  • [4]. Banerjee B.D., Seth V., Ahmed R.S., Pesticide-induced oxidative stress: perspectives and trends, Rev. Environ. Health, 2001; 16: 1–40.
  • [5]. Attia, A.A., ElMazoudy, R.H., Nahla S. El-Shenawy, N.S., Antioxidant role of propolis extract against oxidative damage of testicular tissue induced by insecticide chlorpyrifos in rats, Pesticide Biochemistry and Physiology, 2012; 103: 87–93.
  • [6]. Halliwell B., Gutteridge J. M. C., Free Radicals In Biology And Medicine. Third Edition, Oxford University Press., New York, 1999.
  • [7]. Chelikani P., Fita I., Loewen P.C., Diversity of structures and properties among catalases, Cell Mol Life Sci. 2004; 61 (2): 192–208.
  • [8]. Gaetani G., Ferraris A., Rolfo M., Mangerini R., Arena S., Kirkman H., Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 1996; 87 (4): 1595–9.
  • [9]. Jardim A.N.O., Caldas E.D., Brazilian monitoring programs for pesticide residues in food-Results from 2001 to 2010, Food Control, 2012; 25: 607–616.
  • [10]. Lozowicka B., Kaczynski P., Paritova A.E., Kuzembekova G.B., Abzhalieva A.B., Sarsembayeva N.B., Alihan K., Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides, Food and Chemical Toxicology, 2014; 64: 238–248.
  • [11]. Skretteberg L.G., Lyran B., Holen B., Jansson A., Fohgelberg P., Siivinen K., Andersen J.H., Jensen B.H., Pesticide residues in food of plant origin from Southeast Asia-A Nordic Project, Food Control, 2015; 51: 225–235.
  • [12]. Liu Y., Li S., Ni Z., Qu M., Zhong D., Ye C., Fubin Tang pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils, Science of the Total Environment, 2016; 542: 620–628.
  • [13]. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurements with the folin phenol reagent, The Journal of Biological Chemistry, 1951; 193: 265–275.
  • [14]. Lartillot S., Kadziora P., Athios A., Purification and characterization of new fungal catalase, Prep Biochem, 1988; 18(3): 241–246.
  • [15]. Bergmeyer H.U., In: Bergmeyer, HU. (Ed.), Methods of Enzymatic Analysis. 2nd ed, vol.1., Academic press, New York, USA, 1974; 438 p.
  • [16]. Tukel S.S., Alptekin O., Immobilization and kinetics of catalase onto magnesium silicate, Process Biochemistry, 2004; 39: 2149–2155.
  • [17]. Karadag H., Bilgin R., Effect of cyprodinil and fludioxonil pesticides on human superoxide dismutase, Asian Journal of Chemistry, 2010; 22(10): 8147-8154.
  • [18]. John S., Kale M., Rathore N., Bhatnagar D., Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes, The Journal of Nutritional Biochemistry, 2001; 12(9): 500–504.
  • [19]. [19] Ritola O., Livingstone D.R., Peters L.D., Lindstrom-Seppa P., Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water, Aquaculture 2002; 210: 1–19.
  • [20]. Karadag H., Ozhan F., Effect of cyprodinil and fludioxonil pesticides on bovine liver Catalase activity, Biotechnology & Biotechnological Equipment, 2015; 29(1): 40-44.
  • [21]. Karadag H. and Uluca H., Effect of deltamethrin and alpha cypermethrin pesticides on bovine liver catalase activity, Fresenius Environmental Bulletin, 2015; 24(11): 3562-3566.
  • [22]. Karadag H., Kaplan F., Effect of lambda cyhalothrin and fenthion pesticides on bovine liver catalase activity, Fresenius Environmental Bulletin, 2016; 25(8): 3012-3016.
  • [23]. Cacciatore L.C., Nemirovsky S.I., Guerrero N.R.V., Cochón A.C., Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus, Aquatic Toxicology, 2015; 167: 12–19.
  • [24]. Wu H., Zhang R., Liu J., Guo Y., Ma E., Effects of malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: Acrididae), Chemosphere, 2011; 83: 599–604.
  • [25]. Kaur R., Sandhu H.S., In vivo changes in antioxidant system and protective role of selenium in chlorpyrifos-induced subchronic toxicity in bubalus bubalis, Environmental Toxicology and Pharmacology 2008; 26: 45–48.
  • [26]. Jin Y., Liu Z., Peng T., Fu Z., The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress and İmmunotoxicity, Fish & Shellfish Immunology, 43 (2015) 405-414.
  • [27]. Aly N., EL-Gendy K., Mahmoud F., El-Sebae A.K, Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice, Pesticide Biochemistry and Physiology, 97 (2010) 7–12.
  • [28]. Oruc E.O., Sevgiler Y., Uner N., Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl, Comparative Biochemistry and Physiology, Part C 137 (2004) 43–51.
  • [29]. Atamaniuk T.M., Kubrak O.I., Storey K.B., Lushchak V.I., Oxidative stress as a Mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills, Ecotoxicology 22 (2013) 1498–1508.
There are 29 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Hasan Karadağ

Publication Date September 30, 2018
Submission Date November 1, 2017
Acceptance Date March 20, 2018
Published in Issue Year 2018Volume: 39 Issue: 3

Cite

APA Karadağ, H. (2018). The Investigation of the Effects of Chlorpyrifos and 2,4-Dichlorophenoxyacetic Acid Application on Bovine Liver Catalase Activity. Cumhuriyet Science Journal, 39(3), 615-620. https://doi.org/10.17776/csj.348453