Research Article
BibTex RIS Cite

Canlı İki Yeşil Mikroalg Üzerinde Nikel (II), Antimon (III), Mangan (II) ve Bakır (II)’ın Dörtlü Adsorpsiyon Etkisi

Year 2018, Volume: 39 Issue: 2, 439 - 453, 29.06.2018
https://doi.org/10.17776/csj.434265

Abstract

Bu
çalışmada, Chlorella ve Scenedesmus algleri kullanılarak sulu
çözeltilerden Ni, Sb, Mn ve Cu adsorpsiyonunun araştırılması amaçlanmıştır. 24
saat inkübasyon süresi boyunca çoklu metal sulu çözeltiden canlı iki mikro alg
suşu üzerinde nikel (Ni+2), antimony (Sb+3), mangan (Mn+2)
ve bakırın (Cu+2) yarışmalı adsorpsiyon verimliliği incelenmiştir.
Metal uygulaması sonrasında, klorofil a-b, toplam karbonhidrat ve atomik kuvvet
mikroskobu (AFM) görüntülemesi analiz edilmiştir. Metal iyonlarının adsorpsiyon
izoterm modelleri Langmuir ve Freundlich izotermlerine göre belirlenmiştir.
Çoklu metal sisteminin Scenedesmus hücreleri tarafından sırasıyla antimon:
10.82 mgg-1, mangan:
7.07 mgg-1, bakır: 27.09 mgg-1 ve nikel: 9.71 mgg-1 (
Cu>Sb>Ni>Mn) olarak belirlenirken Chlorella için adsorbsiyon
kapasitesi antimon: 6.47 mgg-1,
mangan: 5.96 mg g-1,
bakır: 28.57 mgg-1 ve
nikel: 10.71 mgg-1 (
Cu>Ni>Sb>Mn) olarak belirlenmiştir. AFM görüntülerine göre, ağır
metallere maruz bırakılmış iki algin hücre duvarında, maruz bırakılmamış
hücrelere kıyasla deformasyon tespit edilmiştir. Bu çalışma
için
Freundlich adsorbsiyon modeli 1/n değerinin 1’den küçük olmasıyla tüm metal
iyonları için uygundur. Sonuç olarak, çalışmada elde edilen sonuçlar
değerlendirildiğinde, Chlorella ve Scenedesmus hücrelerinin, dört
ağır metali, özellikle Cu adsorpsiyonunun yüksek verimliliği nedeniyle, Cu+2
iyonlarının sulu çözeltilerden uzaklaştırılmasında etkili bir adsorbent
olduğunu ortaya koymuştur.

References

  • [1]. Aksu Z., Sag Y., Kutsal T. The biosorpnon of copperod by C. vulgaris and Z. Ramigera. Environ. Technol., 13 (1990) 579-586.
  • [2]. Wilde E.W., Benemann J.R. Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv., 11 (1993) 781–812.
  • [3]. Garnham G.W. The use of algae as metal biosorbents. In: Biosorbents for metal ions: Taylor and Francis, London, 50 (1997) 11-37.
  • [4]. Wase D.A.J., Forster C.F., Yo Y.S. Biosorption of heavy metals: An introduction. In: Biosorbents for Metal Ions. Taylor and Francis, London, 50 (1997) 141– 163.
  • [5]. Torres E., Cid A., Herrero C. Abalde J. Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water, Air, Soil Pollut., 117 (2000) 1–14.
  • [6]. Chouteau C., Dzyadevych S., Chovelon, J.M. Durrieu, C. Biosens. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Bioelectron., 19 (2004) 1089–1096.
  • [7]. Durrieu C., Guedri H., Fremion F. Volatier L. Unicellular algae used as biosensors for chemical detection in Mediterranean lagoon and coastal waters. Res. Microbiol., 162 (2011) 908–914.
  • [8]. Monisha J., Tenzin T., Naresh A., Blessy B.M., Krishnamurthy N.B. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol., 7 (2014) 60–72.
  • [9]. Stanier R.Y., Kunisawa R., Mandel M., Choen B. Purification and properties of unicellular blue- green algae (Order Chroococcales). Bacteriological Reviews, 35 (1971) 171-205.
  • [10]. Parsons T.R., Strickland J.D. Discussion of pectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlophylls and carotenoids. J. Marine Research., 21 (1963) 115-63.
  • [11]. Dubois M., Gilles A.K., Hamilton J.K., Rebers, P.A., Smith, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry., 28 (1956) 350- 356.
  • [12]. Cucarella V., Renman G. Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments-a comparative study. J. Environ. Quality., 38 (2009) 381–92.
  • [13]. Freundlich H. Uber die adsorption in Losungen. Z. Phys. Chem., 57 (1907) 385–470.
  • [14]. Sari A., Tuzen M. Biosorption of Pb(II) andCd(II) from aqueous solution using green alga (UIva lactuca) biomass.J. of Hazardous Materials., 152 (2008) 302–08.
  • [15]. Khorramfar S., Mahmoodi N., Arami M. Dye removal from colored textile wastewater using tamarindus indica hull: Adsorption isotherm and kinetics study. J. Color Science Technology., 3 (2009) 81–88.
  • [16]. Molazadeh P., Khanjani N., Rahimi M.Z., Nasiri A. Adsorption of lead by microalgae Chaetoceros sp. and Chlorella sp. from aqueous solution. J. Community Health Research., 4 (2015) 114–127.
  • [17]. Moiseenko TI., Kudryavtseva LP. Trace metal accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola region. Environmental Pol., 114 (2001) 285–297.
  • [18]. Saleh T.A., Gupta V.K. (a). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multiwalled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci., 371 (2012) 101–106.
  • [19]. Saleh T.A., Gupta V.K. (b). Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol., 89 (2012) 245–251.
  • [20]. Foy C.D. I., Chaney R.L.,White M.C. Crassulacean acid metabolism: A curiosity in context. Annual Review of Plant Phys., 29 (1978) 551- 566.
  • [21]. Rai L.C., Gaur J.P., Kumar H.D. Phycology and heavy-metal pollution. Biol. Rev. Cambridge Philos. Soc., 56 (1981) 99- 151.
  • [22]. Heath R.L. Possible mechanisms for the inhibition of photosynthesis by ozone. Photosynth. Res., 39 (1994) 439–451.
  • [23]. Rachlin J.W., Grosso A. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure. Arch. Environ. Contam. Toxicol., 24 (1993) 16–20.
  • [24]. Senturk, T., Yildiz, S. Adsorbent effect of Chlorella vulgaris and Scenedesmus sp. (Chlorophyta) for the removal of some heavy metals and nutrients. Turkish J. Biochem., 41 (2016) 87–95.
  • [25]. Soldo D., Hari R., Sigg L., Behra R. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquatic Toxicol., 71 (2005) 307- 317.
  • [26]. Ting YP., F. Lawson LG. Uptake of cadmium and zinc by the alga Chlorella vulgaris: II. Multi‐ion situation. Biotechnol. Bioeng., 37 (1991) 445-455.
  • [27]. Volesky B., R May R, Holan Z.R. Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioeng., 41 (1993) 826-289.
  • [28]. Lopez-Suarez C.E., Castro-Romero J.M.,, Gonzalez-Rodriguez M.V., Gonzalez-Soto E., Perez-Iglesias J., Seco-Lago H.M., Fernandez-Solis J.M.S. Study of the parameters affecting the binding of metals in solution by Chlorella vulgaris. Talanta, 50 (2000) 1313–1318.
  • [29]. Knauer K., Behraa R., Sigg L. Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environ. Toxicol. Chem., 16 (1997) 220–229.
  • [30]. Fayed Sami E., Abdel S., Hussein I., Khalifa Nadia M. Accumulation of Cu, Zn, Cd and Pb by Scenedesmus obliquus under nongrowth conditions. Environment Inter., 9 (1983) 409-413.
  • [31]. Kessler E. Limits of growth of live Chlorella species in the presence of toxic heavy metals. Arch. Hydrobiol., 73 (1986) 123–128.
  • [32]. Guanzon N.G.J.R., Nakahara H., Yodhida Y. Inhibitory effects of heavy metals on growth and photosynthesis of three freshwater microalgae. Fish. Sci., 60 (1994) 379–384.
  • [33]. Kadirvelu K., Namasivayam C. Agricutural by-product as metal adsorbent: Sorption of Lead(II) from aqueous solution onto coirpith carbon. Environmental Techn., 21 (2000) 1091–1097.
  • [34]. Basha S., Keane D., Morrissey A., Nolan K., Oelgemöller M., Tobin J. Studies on the adsorption and kinetics of photodegradation of pharmaceutical compound, indomethacin using novel photocatalytic adsorbents (IPCAs). Ind. Eng. Chem. Res., 49 (2010) 11302–11309.
  • [35]. Jaishankar M., Tseten T., Anbalagan N., Blessy B. Mathew, Krishnamurthy N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol., 7 (2014) 60–72.

Quaternary Adsorption Effect of Nickel (II), Antimony (III), Manganese (II) and Copper (II) onto Living Two Green Microalgae

Year 2018, Volume: 39 Issue: 2, 439 - 453, 29.06.2018
https://doi.org/10.17776/csj.434265

Abstract

This
study aimed to investigate Ni, Sb, Mn and Cu adsorption from aqueous solution
by Chlorella and Scenedesmus algae. The
competitive
adsorption
efficiency
of
nickel
(
Ni2+),
antimony (
Sb3+),
manganese (
Mn2+)
and copper (
Cu2+)
onto
two living
microalgae

strains was studied from multi-metal aqueous solution for 24h incubation time.
After exposure, chlorophyll a-b, total carbohydrate and Atomic force microscopy (AFM) imaging were performed. Then
adsorption isotherms models of metal ions were determined based on Langmuir and
Freundlich isotherms. The adsorption capacity in multi-metal system was
determined 6.47 mgg-1 for antimony,
5.96 mgg-1 for manganese, 28.57 mgg-1 for copperand 10.71 mgg-1 for nickel (
Cu>Ni>Sb>Mn)
by Chlorella respectively, whereas, and
10.82 mg g-1 for antimony, 7.07 mgg-1
for manganese, 27.09 mgg-1 for
copper and 9.71 mgg-1 for nickel(
Cu>Sb>Ni>Mn)
by Scenedesmus cells. According to AFM images, deformation was detected in two algae cell walls
treated with heavy metals compared to untreated cells. For this study,
Freundlich
adsorption model best fitted the data for all metal ions with 1/n value <1. As
a result, when the results obtained in the study are
revealed that Chlorella and Scenedesmus cells
were an effective adsorbent for removal of the four heavy metals, especially Cu2+
ions from aqueous solutions
due to its high efficiency of Cu adsorption.

References

  • [1]. Aksu Z., Sag Y., Kutsal T. The biosorpnon of copperod by C. vulgaris and Z. Ramigera. Environ. Technol., 13 (1990) 579-586.
  • [2]. Wilde E.W., Benemann J.R. Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv., 11 (1993) 781–812.
  • [3]. Garnham G.W. The use of algae as metal biosorbents. In: Biosorbents for metal ions: Taylor and Francis, London, 50 (1997) 11-37.
  • [4]. Wase D.A.J., Forster C.F., Yo Y.S. Biosorption of heavy metals: An introduction. In: Biosorbents for Metal Ions. Taylor and Francis, London, 50 (1997) 141– 163.
  • [5]. Torres E., Cid A., Herrero C. Abalde J. Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water, Air, Soil Pollut., 117 (2000) 1–14.
  • [6]. Chouteau C., Dzyadevych S., Chovelon, J.M. Durrieu, C. Biosens. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Bioelectron., 19 (2004) 1089–1096.
  • [7]. Durrieu C., Guedri H., Fremion F. Volatier L. Unicellular algae used as biosensors for chemical detection in Mediterranean lagoon and coastal waters. Res. Microbiol., 162 (2011) 908–914.
  • [8]. Monisha J., Tenzin T., Naresh A., Blessy B.M., Krishnamurthy N.B. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol., 7 (2014) 60–72.
  • [9]. Stanier R.Y., Kunisawa R., Mandel M., Choen B. Purification and properties of unicellular blue- green algae (Order Chroococcales). Bacteriological Reviews, 35 (1971) 171-205.
  • [10]. Parsons T.R., Strickland J.D. Discussion of pectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlophylls and carotenoids. J. Marine Research., 21 (1963) 115-63.
  • [11]. Dubois M., Gilles A.K., Hamilton J.K., Rebers, P.A., Smith, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry., 28 (1956) 350- 356.
  • [12]. Cucarella V., Renman G. Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments-a comparative study. J. Environ. Quality., 38 (2009) 381–92.
  • [13]. Freundlich H. Uber die adsorption in Losungen. Z. Phys. Chem., 57 (1907) 385–470.
  • [14]. Sari A., Tuzen M. Biosorption of Pb(II) andCd(II) from aqueous solution using green alga (UIva lactuca) biomass.J. of Hazardous Materials., 152 (2008) 302–08.
  • [15]. Khorramfar S., Mahmoodi N., Arami M. Dye removal from colored textile wastewater using tamarindus indica hull: Adsorption isotherm and kinetics study. J. Color Science Technology., 3 (2009) 81–88.
  • [16]. Molazadeh P., Khanjani N., Rahimi M.Z., Nasiri A. Adsorption of lead by microalgae Chaetoceros sp. and Chlorella sp. from aqueous solution. J. Community Health Research., 4 (2015) 114–127.
  • [17]. Moiseenko TI., Kudryavtseva LP. Trace metal accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola region. Environmental Pol., 114 (2001) 285–297.
  • [18]. Saleh T.A., Gupta V.K. (a). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multiwalled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci., 371 (2012) 101–106.
  • [19]. Saleh T.A., Gupta V.K. (b). Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol., 89 (2012) 245–251.
  • [20]. Foy C.D. I., Chaney R.L.,White M.C. Crassulacean acid metabolism: A curiosity in context. Annual Review of Plant Phys., 29 (1978) 551- 566.
  • [21]. Rai L.C., Gaur J.P., Kumar H.D. Phycology and heavy-metal pollution. Biol. Rev. Cambridge Philos. Soc., 56 (1981) 99- 151.
  • [22]. Heath R.L. Possible mechanisms for the inhibition of photosynthesis by ozone. Photosynth. Res., 39 (1994) 439–451.
  • [23]. Rachlin J.W., Grosso A. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure. Arch. Environ. Contam. Toxicol., 24 (1993) 16–20.
  • [24]. Senturk, T., Yildiz, S. Adsorbent effect of Chlorella vulgaris and Scenedesmus sp. (Chlorophyta) for the removal of some heavy metals and nutrients. Turkish J. Biochem., 41 (2016) 87–95.
  • [25]. Soldo D., Hari R., Sigg L., Behra R. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquatic Toxicol., 71 (2005) 307- 317.
  • [26]. Ting YP., F. Lawson LG. Uptake of cadmium and zinc by the alga Chlorella vulgaris: II. Multi‐ion situation. Biotechnol. Bioeng., 37 (1991) 445-455.
  • [27]. Volesky B., R May R, Holan Z.R. Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioeng., 41 (1993) 826-289.
  • [28]. Lopez-Suarez C.E., Castro-Romero J.M.,, Gonzalez-Rodriguez M.V., Gonzalez-Soto E., Perez-Iglesias J., Seco-Lago H.M., Fernandez-Solis J.M.S. Study of the parameters affecting the binding of metals in solution by Chlorella vulgaris. Talanta, 50 (2000) 1313–1318.
  • [29]. Knauer K., Behraa R., Sigg L. Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environ. Toxicol. Chem., 16 (1997) 220–229.
  • [30]. Fayed Sami E., Abdel S., Hussein I., Khalifa Nadia M. Accumulation of Cu, Zn, Cd and Pb by Scenedesmus obliquus under nongrowth conditions. Environment Inter., 9 (1983) 409-413.
  • [31]. Kessler E. Limits of growth of live Chlorella species in the presence of toxic heavy metals. Arch. Hydrobiol., 73 (1986) 123–128.
  • [32]. Guanzon N.G.J.R., Nakahara H., Yodhida Y. Inhibitory effects of heavy metals on growth and photosynthesis of three freshwater microalgae. Fish. Sci., 60 (1994) 379–384.
  • [33]. Kadirvelu K., Namasivayam C. Agricutural by-product as metal adsorbent: Sorption of Lead(II) from aqueous solution onto coirpith carbon. Environmental Techn., 21 (2000) 1091–1097.
  • [34]. Basha S., Keane D., Morrissey A., Nolan K., Oelgemöller M., Tobin J. Studies on the adsorption and kinetics of photodegradation of pharmaceutical compound, indomethacin using novel photocatalytic adsorbents (IPCAs). Ind. Eng. Chem. Res., 49 (2010) 11302–11309.
  • [35]. Jaishankar M., Tseten T., Anbalagan N., Blessy B. Mathew, Krishnamurthy N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol., 7 (2014) 60–72.
There are 35 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Natural Sciences
Authors

Tuğba Şentürk

Şükran Yıldız

Publication Date June 29, 2018
Submission Date September 22, 2017
Acceptance Date May 8, 2018
Published in Issue Year 2018Volume: 39 Issue: 2

Cite

APA Şentürk, T., & Yıldız, Ş. (2018). Quaternary Adsorption Effect of Nickel (II), Antimony (III), Manganese (II) and Copper (II) onto Living Two Green Microalgae. Cumhuriyet Science Journal, 39(2), 439-453. https://doi.org/10.17776/csj.434265