Research Article
BibTex RIS Cite

A New Spherical Catalyst For Hydrogen Evolution Reaction

Year 2018, Volume: 39 Issue: 1, 250 - 257, 16.03.2018
https://doi.org/10.17776/csj.406167

Abstract

CuFeZn composite catalysts have been prepared on the graphite electrode
by electrochemical deposition as electrocatalytic materials for hydrogen
evolution reaction (HER). The etching
process was applied on catalysts in caustic solution to leach out zinc and to
produce a porous electrocatalytic surface
for hydrogen evolution. The surface morphologies were investigated by scanning electron microscopy. HER activity is assessed by recording cathodic
current–potential curves, cyclic voltammetry, electrochemical impedance
spectroscopy and electrolysis techniques. The results show that etched
catalysts have a compact and porous structure as well as a good electrocatalytic activity for the HER in
alkaline media.

References

  • [1]. Bicer Y., Chehade G., Dincer I., Experimental investigation of various copper oxide electrodeposition conditions on photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, 42 (2017) 6490-6501.
  • [2]. Ngamlerdpokin K., Tantavichet N., Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media, Int. J. Hydrogen Energy, 39 (2014) 2505-2515.
  • [3]. Telli E., Döner A., Kardaş G., Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium, Electrochim. Acta, 107 (2013) 216-224.
  • [4]. Parsons R., The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen, Transactions of the Faraday Society, 54 (1958) 1053-1063.
  • [5]. Crnkovic F., Machado S., Avaca L., Electrochemical and morphological studies of electrodeposited Ni–Fe–Mo–Zn alloys tailored for water electrolysis, Int. J. Hydrogen Energy, 29 (2004) 249-254.
  • [6]. Mouanga M., Puiggali M., Devos O., EIS and LEIS investigation of aging low carbon steel with Zn–Ni coating, Electrochim. Acta, 106 (2013) 82-90.
  • [7]. Ortiz-Aparicio J., Meas Y., Trejo G., Ortega R., Chapman T., Chaînet E., Ozil P., Electrodeposition of zinc–cobalt alloy from a complexing alkaline glycinate bath, Electrochim. Acta, 52 (2007) 4742-4751.
  • [8]. Szczygieł B., Laszczyńska A., Tylus W., Influence of molybdenum on properties of Zn–Ni and Zn–Co alloy coatings, Surf. Coat. Technol., 204 (2010) 1438-1444.
  • [9]. Winiarski J., Tylus W., Krawczyk M., Szczygieł B., The influence of molybdenum on the electrodeposition and properties of ternary Zn–Fe–Mo alloy coatings, Electrochim. Acta, 196 (2016) 708-726.
  • [10]. Golvano-Escobal I., Suriñach S., Baró M.D., Pané S., Sort J., Pellicer E., Electrodeposition of sizeable and compositionally tunable rhodium-iron nanoparticles and their activity toward hydrogen evolution reaction, Electrochim. Acta, 194 (2016) 263-275.
  • [11]. Safizadeh F., Ghali E., Houlachi G., Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review, Int. J. Hydrogen Energy, 40 (2015) 256-274.
  • [12]. Sequeira C., Santos D., Brito P., Electrocatalytic activity of simple and modified Fe–P electrodeposits for hydrogen evolution from alkaline media, Energy, 36 (2011) 847-853.
  • [13]. Döner A., Solmaz R., Kardaş G., Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution, Int. J. Hydrogen Energy, 36 (2011) 7391-7397.
  • [14]. Döner A., Solmaz R., Kardaş G., Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell, Energy, 90 (2015) 1144-1151.
  • [15]. Farsak M., Telli E., Yüce A.O., Kardaş G., The noble metal loading binary iron–zinc electrode for hydrogen production, Int. J. Hydrogen Energy, (2016)
  • [16]. Solmaz R., Döner A., Doğrubaş M., Erdoğan İ.Y., Kardaş G., Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis, Int. J. Hydrogen Energy, 41 (2016) 1432-1440.
  • [17]. Solmaz R., Döner A., Kardaş G., Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution, Int. J. Hydrogen Energy, 35 (2010) 10045-10049.
  • [18]. Solmaz R., Kardaş G., Hydrogen evolution and corrosion performance of NiZn coatings, Energy Convers. Manage., 48 (2007) 583-591.
  • [19]. Solmaz R., Kardaş G., Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis, Electrochim. Acta, 54 (2009) 3726-3734.
  • [20]. Solmaz R., Kardaş G., Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production, Int. J. Hydrogen Energy, 36 (2011) 12079-12087.
  • [21]. Solmaz R., Salcı A., Yüksel H., Doğrubaş M., Kardaş G., Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis, Int. J. Hydrogen Energy, 42 (2017) 2464-2475.
  • [22]. Kaninski M.P.M., Nikolić V.M., Potkonjak T.N., Simonović B.R., Potkonjak N.I., Catalytic activity of Pt-based intermetallics for the hydrogen production-Influence of ionic activator, Applied Catalysis A: General, 321 (2007) 93-99.
  • [23]. Navarro-Flores E., Chong Z., Omanovic S., Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium, J. Mol. Catal. A: Chem., 226 (2005) 179-197.
  • [24]. Yüce A.O., Döner A., Kardaş G., NiMn composite electrodes as cathode material for hydrogen evolution reaction in alkaline solution, Int. J. Hydrogen Energy, 38 (2013) 4466-4473.

Hidrojen İndirgenme Reaksiyonu İçin Yeni Bir Küresel Katalizör

Year 2018, Volume: 39 Issue: 1, 250 - 257, 16.03.2018
https://doi.org/10.17776/csj.406167

Abstract

CuFeZn kompozit katalizörleri, hidrojen indirgenme reaksiyonu (HER) için
elektrokimyasal malzemeler olarak elektrokimyasal biriktirme ile grafit
elektrotu üzerinde hazırlanmıştır. Sodyum hidroksit çözeltideki aşındırma
işlemi, çinkoyu yüzeyden uzaklaştırmak ve hidrojen indirgeme için gözenekli bir
elektrokatalitik yüzey üretmek için katalizörler üzerinde uygulanmıştır. Yüzey
morfolojileri taramalı elektron mikroskobu ile araştırıldı. HER aktivitesi
katodik akım-potansiyel eğrileri, dönüşümlü voltametri, elektrokimyasal
impedans spektroskopisi ve elektroliz teknikleri kullanılarak değerlendirildi.
Sonuçlar, aşındırılmış katalizörlerin, alkali ortamlarda HER için iyi bir
elektrokatalitik aktivitenin yanı sıra, kompakt ve gözenekli bir yapıya sahip
olduğunu göstermektedir.

References

  • [1]. Bicer Y., Chehade G., Dincer I., Experimental investigation of various copper oxide electrodeposition conditions on photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, 42 (2017) 6490-6501.
  • [2]. Ngamlerdpokin K., Tantavichet N., Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media, Int. J. Hydrogen Energy, 39 (2014) 2505-2515.
  • [3]. Telli E., Döner A., Kardaş G., Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium, Electrochim. Acta, 107 (2013) 216-224.
  • [4]. Parsons R., The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen, Transactions of the Faraday Society, 54 (1958) 1053-1063.
  • [5]. Crnkovic F., Machado S., Avaca L., Electrochemical and morphological studies of electrodeposited Ni–Fe–Mo–Zn alloys tailored for water electrolysis, Int. J. Hydrogen Energy, 29 (2004) 249-254.
  • [6]. Mouanga M., Puiggali M., Devos O., EIS and LEIS investigation of aging low carbon steel with Zn–Ni coating, Electrochim. Acta, 106 (2013) 82-90.
  • [7]. Ortiz-Aparicio J., Meas Y., Trejo G., Ortega R., Chapman T., Chaînet E., Ozil P., Electrodeposition of zinc–cobalt alloy from a complexing alkaline glycinate bath, Electrochim. Acta, 52 (2007) 4742-4751.
  • [8]. Szczygieł B., Laszczyńska A., Tylus W., Influence of molybdenum on properties of Zn–Ni and Zn–Co alloy coatings, Surf. Coat. Technol., 204 (2010) 1438-1444.
  • [9]. Winiarski J., Tylus W., Krawczyk M., Szczygieł B., The influence of molybdenum on the electrodeposition and properties of ternary Zn–Fe–Mo alloy coatings, Electrochim. Acta, 196 (2016) 708-726.
  • [10]. Golvano-Escobal I., Suriñach S., Baró M.D., Pané S., Sort J., Pellicer E., Electrodeposition of sizeable and compositionally tunable rhodium-iron nanoparticles and their activity toward hydrogen evolution reaction, Electrochim. Acta, 194 (2016) 263-275.
  • [11]. Safizadeh F., Ghali E., Houlachi G., Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review, Int. J. Hydrogen Energy, 40 (2015) 256-274.
  • [12]. Sequeira C., Santos D., Brito P., Electrocatalytic activity of simple and modified Fe–P electrodeposits for hydrogen evolution from alkaline media, Energy, 36 (2011) 847-853.
  • [13]. Döner A., Solmaz R., Kardaş G., Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution, Int. J. Hydrogen Energy, 36 (2011) 7391-7397.
  • [14]. Döner A., Solmaz R., Kardaş G., Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell, Energy, 90 (2015) 1144-1151.
  • [15]. Farsak M., Telli E., Yüce A.O., Kardaş G., The noble metal loading binary iron–zinc electrode for hydrogen production, Int. J. Hydrogen Energy, (2016)
  • [16]. Solmaz R., Döner A., Doğrubaş M., Erdoğan İ.Y., Kardaş G., Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis, Int. J. Hydrogen Energy, 41 (2016) 1432-1440.
  • [17]. Solmaz R., Döner A., Kardaş G., Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution, Int. J. Hydrogen Energy, 35 (2010) 10045-10049.
  • [18]. Solmaz R., Kardaş G., Hydrogen evolution and corrosion performance of NiZn coatings, Energy Convers. Manage., 48 (2007) 583-591.
  • [19]. Solmaz R., Kardaş G., Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis, Electrochim. Acta, 54 (2009) 3726-3734.
  • [20]. Solmaz R., Kardaş G., Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production, Int. J. Hydrogen Energy, 36 (2011) 12079-12087.
  • [21]. Solmaz R., Salcı A., Yüksel H., Doğrubaş M., Kardaş G., Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis, Int. J. Hydrogen Energy, 42 (2017) 2464-2475.
  • [22]. Kaninski M.P.M., Nikolić V.M., Potkonjak T.N., Simonović B.R., Potkonjak N.I., Catalytic activity of Pt-based intermetallics for the hydrogen production-Influence of ionic activator, Applied Catalysis A: General, 321 (2007) 93-99.
  • [23]. Navarro-Flores E., Chong Z., Omanovic S., Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium, J. Mol. Catal. A: Chem., 226 (2005) 179-197.
  • [24]. Yüce A.O., Döner A., Kardaş G., NiMn composite electrodes as cathode material for hydrogen evolution reaction in alkaline solution, Int. J. Hydrogen Energy, 38 (2013) 4466-4473.
There are 24 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Murat Farsak

Publication Date March 16, 2018
Submission Date August 7, 2017
Acceptance Date March 2, 2018
Published in Issue Year 2018Volume: 39 Issue: 1

Cite

APA Farsak, M. (2018). A New Spherical Catalyst For Hydrogen Evolution Reaction. Cumhuriyet Science Journal, 39(1), 250-257. https://doi.org/10.17776/csj.406167