Research Article
BibTex RIS Cite

Alüminyum Titanat/La2O3 -Stabilize Edilmiş Zirkonya Seramiklerin Termal Özellikleri ve Mikroyapısal Karakterizasyonu

Year 2018, Volume: 39 Issue: 1, 243 - 249, 16.03.2018
https://doi.org/10.17776/csj.383329

Abstract

Bu yazıda, geleneksel seramik üretim yöntemleri
ile imal edilen% 8 mol Lanthana (Lantanyum oksit, La2O3)
ile stabilize edilmiş Zirkonya (Zirkonyum Oksit, ZrO2) esaslı
kompozitlerin üretim ve yoğunlaşma davranışları anlatılmaktadır. , La2O3
ile Stabilize edilmiş (dengelenmiş) zirkonyum dioksit (LSZ, mol% 8 La2O3
ile) termal darbeye karşı yüksek tolerans, düşük termal iletkenlik, mekanik
özellikler, yüksek erime noktası, iyi bir faz dengesi ve mükemmel oksidasyon
direnci gibi yüksek üstün sıcaklık özelliklerine sahiptir. Alüminyum titanat
(Al2Ti05), erimiş metallerde iyi kimyasal dirençle
birlikte, termal şok direnci ve düşük termal iletkenliğe sahiptir. Bu
çalışmada, farklı yüzdelerdeki Al2TiO5 ile alüminyum
titanat / LSZ seramikleri toz metalurjisi teknikleri kullanılarak hazırlandı.
Mikroyapısal, mekanik ve termal özellikler XRD, SEM, dilatometre ve sertlik ile
karakterize edildi. Hazırlanan seramiklerin suda soğutulmasıyla termal şok
direnci davranışı da değerlendirildi. Sonuçlar, alüminyum titanatın LSZ
matrisine eklenmesinin alüminyum titanat / LSZ seramiklerinin özelliklerini
geliştirdiğini ortaya koydu.

References

  • [1]. Saclı M., Onen U., Boyraz T., Microstructural Characterization and Thermal Properties of Aluminium Titanate/Porcelain Ceramic Matrix Composites, Acta Physica Polonica A, 127-4 (2015) 1133-1336.
  • [2]. Ozsoy E., Onen U., Boyraz T, Microstructural Characterization and Thermal Properties of Aluminium Titanate/Talc Ceramic Matrix Composites, Acta Physica Polonica A, 127-4 (2015) 1136-1339.
  • [3]. Çitak E., Boyraz T., Microstructural Characterization and Thermal Properties of Aluminium Titanate/YSZ Ceramics, Acta Physica Polonica A,125-2 (2014) 465-468.
  • [4]. Önen U., Boyraz T., Microstructural Characterization and Thermal Properties of Aluminium Titanate/Spinel Ceramic Matrix Composites, Acta Physica Polonica A, 125-2 (2015) 488-491.
  • [5]. Dercz G., Prusik K., Pajak L., Structure investigations of commercial zirconia ceramic powder, Journal of Achievements in Materials and Manufacturing Engineering, 18 (2006) 259-262.
  • [6]. Gökçe H., Boyraz T., Keçeli Z., Öveçoğlu M. L., Addemir O., Microstructural and Physical Characterization of Aluminium Titanate / Cordierite Ceramics, 10th International Conference and Exhibition of the European Ceramic Society, June 17 - 21, Berlin, Germany, 2007.
  • [7]. Nilüfer İ. B., Gökçe H., Muhaffel F., Öveçoğlu M. L., Çimenoğlu H., The effect of La2O3 on the microstructure and room temperature mechanical properties of t-ZrO2, Ceramics International, 42 (2016) 9443-9447.
  • [8]. Gong M.M., Dey S., Wu L.J., Chang C.H., Li H., Castro R.H.R., Liu F., Effects of concurrent grain boundary and surface segregation on the final stage of sintering: the case of Lanthanum doped yttria-stabilized zirconia, Journal of Materials Science & Technology, 33 (2017) 251-260.
  • [9]. Chu C. N., Saka N. And Suh N. P., The Coefficients of Thermal Expansion of La2O3, TaVO5 and Ta16W18O94 Below Room Temperature, J. Eng. Mater. Technol. 108-3(1986) 262-269.
  • [10]. Arellano K.D. R., Bichler L., Akkiraju K., Fong R., Mondal K., Densification behavior of Spark Plasma Sintered La2O3–YSZ ceramic composites, Ceramics International, 40 (2014) 715-722.
  • [11]. Thangadurai P., Sabarinathan V., Bose A. C., Ramasamy S., Conductivity behaviour of a cubic/tetragonal phase stabilized nanocrystalline La2O3 –ZrO2, Journal of Physics and Chemistry of Solids, 65 (2004) 1905-1912.
  • [12]. Arellano K.D. R., Bichler L., Mondal K., Compressive creep behavior of spark plasma sintered La2O3 –YSZ compositeCeramics International, 40(2014)4231–4235.
  • [13]. Kamel N., Aıt-Amar H., H. Fodil-Cherif, M. Taouinet, S. Telmoune, C. Benazzouz, R. Slimani, A. Zahri, Z. Kamel, D. Sahel, Comparative study of simulated zirconia inert matrix fuel stabilized with yttrium, lanthanum or praseodymium: Synthesis and leaching tests, Progress in Nuclear Energy, 48(2015) 70-84.
  • [14]. Din S., Kaleem A., Vickers hardness study of zirconia partially stabilized with lanthanide group oxides, Materials Chemistry and Physics, 53(1998) 48-54.
  • [15]. Yuli C., Gongyi G., Preparation and Characterization of Yttria-Stabilized Zirconia Powders by Solvent Extraction Process, Ceramic International, 23 (1997) 267-272.
  • [16]. Arenas I. B., Reactive Sintering of Aluminum Titanate, Lakshmanan A. (Ed.), Sintering of Ceramics, Croatia: InTech: 2012: chap22.
  • [17]. Low I.M., Oo Z., O’Conner B.H., Effect of atmospheres on the thermal stability of aluminium titanate, Pyysica B, 385-386 (2006) 502-504.
  • [18]. Martínez J.J.M., Melendo M. J., Rodríguez A. D., G. Wötting, High temperature mechanical behavior of aluminium titanate-mullite composites, Journal of the European Ceramic Society, 21 (2001) 63-70.
  • [19]. Yoleva A., Hrıstov V., Djambazov S., Aluminum Titanate Ceramic With Mullite Addition, Ceramics-Silikáty, 53-1 (2009) 20-24.
  • [20]. Papitha R., Suresh M. B., Das D., and Johnson R., Mineral-Oxide-Doped Aluminum Titanate Ceramics with Improved Thermomechanical Properties, Journal of Ceramics, 2013 (2012) 214974.
  • [21]. Skala R.D., Li D., Low I.M., Diffraction, structure and phase stability studies on aluminium titanate, Journal of the European Ceramic Society, 29 (2009) 67-75.
  • [22]. Wei H., Yu L., Wang Z., Bu J., Ma S., Wang Y., Improvement in the Thermal Shock Resistance of Zirconia Ceramic by the Addition of Aluminum Titanate, Advanced Materials Research, 194-196 (2011) 1724-1727.
  • [23]. Shimada T., Mizuno M., Katou K., Nurishi Y., Hashiba M., Sakurada O., Mizuno D., Ono T., Aluminum titanate-tetragonal zirconia composite with low thermal expansion and high strength simultaneously, Solid State Ionics, 101-103 (1997) 1127-1133.
  • [24]. Díaz-Parralejo A., Macías-García A., Ortiz A.L., Cuerda-Correa E. M., Effect of calcinations temperature on the textural properties of 3mol% yttria-stabilized zirconia powders, Journal of Non-Crystalline Solids, 356 (2010) 175-178.
  • [25]. Hayashi H., Saitou T., Maruyama N., Inaba H., Kawamura K., Mori M., Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, 176-5 (2005) 613-619.
  • [26]. Low I. M. and Lawrens D., Factors Controlling the Thermal Stability of Aluminium Titanate Ceramics in Vacuum, J. Am. Ceram. Soc., 88-10 (2005) 2957-2961.

Thermal Properties and Microstructural Characterization of Aluminium Titanate (Al2TiO5) / La2O3 -Stabilized Zirconia (ZrO2) Ceramics

Year 2018, Volume: 39 Issue: 1, 243 - 249, 16.03.2018
https://doi.org/10.17776/csj.383329

Abstract

In this paper defined the productions and densification behaviour of 8
mole% Lanthana (Lanthanum oxide, La2O3)
-stabilized Zirconia (
Zirconium Oxide, ZrO2) based composites fabricated by the conventional ceramic production
process. La2O3 stabilized
zirconia (LSZ, with mole 8% La2O3)
has excellent high temperature properties like low thermal conductivity,
mechanical properties, elevated melting point, high toleration for thermal
shock, superior oxidation resistance and well phase stability. Aluminium
titanate (Al2TiO5) low thermal conductivity coupled with
well chemical resistance in melted metals and exhibit extremely well thermal
shock resistance. In this study, Aluminium titanate / LSZ ceramic with
different proportions of Al2TiO5 was prepared by powder
metallurgy techniques. The mechanical, thermal and microstructural properties were characterized by XRD, SEM, hardness
and dilatometer. The thermal shock resistance performance under water quenching
of the as-prepared ceramics was also estimated. As a results shown that the
adding of aluminium titanate to LSZ matrix improves the properties of the
aluminium titanate / LSZ ceramics.
   

References

  • [1]. Saclı M., Onen U., Boyraz T., Microstructural Characterization and Thermal Properties of Aluminium Titanate/Porcelain Ceramic Matrix Composites, Acta Physica Polonica A, 127-4 (2015) 1133-1336.
  • [2]. Ozsoy E., Onen U., Boyraz T, Microstructural Characterization and Thermal Properties of Aluminium Titanate/Talc Ceramic Matrix Composites, Acta Physica Polonica A, 127-4 (2015) 1136-1339.
  • [3]. Çitak E., Boyraz T., Microstructural Characterization and Thermal Properties of Aluminium Titanate/YSZ Ceramics, Acta Physica Polonica A,125-2 (2014) 465-468.
  • [4]. Önen U., Boyraz T., Microstructural Characterization and Thermal Properties of Aluminium Titanate/Spinel Ceramic Matrix Composites, Acta Physica Polonica A, 125-2 (2015) 488-491.
  • [5]. Dercz G., Prusik K., Pajak L., Structure investigations of commercial zirconia ceramic powder, Journal of Achievements in Materials and Manufacturing Engineering, 18 (2006) 259-262.
  • [6]. Gökçe H., Boyraz T., Keçeli Z., Öveçoğlu M. L., Addemir O., Microstructural and Physical Characterization of Aluminium Titanate / Cordierite Ceramics, 10th International Conference and Exhibition of the European Ceramic Society, June 17 - 21, Berlin, Germany, 2007.
  • [7]. Nilüfer İ. B., Gökçe H., Muhaffel F., Öveçoğlu M. L., Çimenoğlu H., The effect of La2O3 on the microstructure and room temperature mechanical properties of t-ZrO2, Ceramics International, 42 (2016) 9443-9447.
  • [8]. Gong M.M., Dey S., Wu L.J., Chang C.H., Li H., Castro R.H.R., Liu F., Effects of concurrent grain boundary and surface segregation on the final stage of sintering: the case of Lanthanum doped yttria-stabilized zirconia, Journal of Materials Science & Technology, 33 (2017) 251-260.
  • [9]. Chu C. N., Saka N. And Suh N. P., The Coefficients of Thermal Expansion of La2O3, TaVO5 and Ta16W18O94 Below Room Temperature, J. Eng. Mater. Technol. 108-3(1986) 262-269.
  • [10]. Arellano K.D. R., Bichler L., Akkiraju K., Fong R., Mondal K., Densification behavior of Spark Plasma Sintered La2O3–YSZ ceramic composites, Ceramics International, 40 (2014) 715-722.
  • [11]. Thangadurai P., Sabarinathan V., Bose A. C., Ramasamy S., Conductivity behaviour of a cubic/tetragonal phase stabilized nanocrystalline La2O3 –ZrO2, Journal of Physics and Chemistry of Solids, 65 (2004) 1905-1912.
  • [12]. Arellano K.D. R., Bichler L., Mondal K., Compressive creep behavior of spark plasma sintered La2O3 –YSZ compositeCeramics International, 40(2014)4231–4235.
  • [13]. Kamel N., Aıt-Amar H., H. Fodil-Cherif, M. Taouinet, S. Telmoune, C. Benazzouz, R. Slimani, A. Zahri, Z. Kamel, D. Sahel, Comparative study of simulated zirconia inert matrix fuel stabilized with yttrium, lanthanum or praseodymium: Synthesis and leaching tests, Progress in Nuclear Energy, 48(2015) 70-84.
  • [14]. Din S., Kaleem A., Vickers hardness study of zirconia partially stabilized with lanthanide group oxides, Materials Chemistry and Physics, 53(1998) 48-54.
  • [15]. Yuli C., Gongyi G., Preparation and Characterization of Yttria-Stabilized Zirconia Powders by Solvent Extraction Process, Ceramic International, 23 (1997) 267-272.
  • [16]. Arenas I. B., Reactive Sintering of Aluminum Titanate, Lakshmanan A. (Ed.), Sintering of Ceramics, Croatia: InTech: 2012: chap22.
  • [17]. Low I.M., Oo Z., O’Conner B.H., Effect of atmospheres on the thermal stability of aluminium titanate, Pyysica B, 385-386 (2006) 502-504.
  • [18]. Martínez J.J.M., Melendo M. J., Rodríguez A. D., G. Wötting, High temperature mechanical behavior of aluminium titanate-mullite composites, Journal of the European Ceramic Society, 21 (2001) 63-70.
  • [19]. Yoleva A., Hrıstov V., Djambazov S., Aluminum Titanate Ceramic With Mullite Addition, Ceramics-Silikáty, 53-1 (2009) 20-24.
  • [20]. Papitha R., Suresh M. B., Das D., and Johnson R., Mineral-Oxide-Doped Aluminum Titanate Ceramics with Improved Thermomechanical Properties, Journal of Ceramics, 2013 (2012) 214974.
  • [21]. Skala R.D., Li D., Low I.M., Diffraction, structure and phase stability studies on aluminium titanate, Journal of the European Ceramic Society, 29 (2009) 67-75.
  • [22]. Wei H., Yu L., Wang Z., Bu J., Ma S., Wang Y., Improvement in the Thermal Shock Resistance of Zirconia Ceramic by the Addition of Aluminum Titanate, Advanced Materials Research, 194-196 (2011) 1724-1727.
  • [23]. Shimada T., Mizuno M., Katou K., Nurishi Y., Hashiba M., Sakurada O., Mizuno D., Ono T., Aluminum titanate-tetragonal zirconia composite with low thermal expansion and high strength simultaneously, Solid State Ionics, 101-103 (1997) 1127-1133.
  • [24]. Díaz-Parralejo A., Macías-García A., Ortiz A.L., Cuerda-Correa E. M., Effect of calcinations temperature on the textural properties of 3mol% yttria-stabilized zirconia powders, Journal of Non-Crystalline Solids, 356 (2010) 175-178.
  • [25]. Hayashi H., Saitou T., Maruyama N., Inaba H., Kawamura K., Mori M., Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics, 176-5 (2005) 613-619.
  • [26]. Low I. M. and Lawrens D., Factors Controlling the Thermal Stability of Aluminium Titanate Ceramics in Vacuum, J. Am. Ceram. Soc., 88-10 (2005) 2957-2961.
There are 26 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Tahsin Boyraz 0000-0003-4404-6388

Publication Date March 16, 2018
Submission Date January 24, 2018
Acceptance Date February 21, 2018
Published in Issue Year 2018Volume: 39 Issue: 1

Cite

APA Boyraz, T. (2018). Thermal Properties and Microstructural Characterization of Aluminium Titanate (Al2TiO5) / La2O3 -Stabilized Zirconia (ZrO2) Ceramics. Cumhuriyet Science Journal, 39(1), 243-249. https://doi.org/10.17776/csj.383329