Conference Paper
BibTex RIS Cite

Tek Eksenli Stres Etkisi Altında Demir Çatlak Kusurları Kararlılığı

Year 2018, Volume: 39 Issue: 1, 16 - 22, 16.03.2018
https://doi.org/10.17776/csj.359753

Abstract

Stres alanlarındaki
kusur kinetiğinin anlaşılması, nükleer maddelerin bozulmasının çok boyutlu
modellenmesi için önemlidir. Moleküler dinamik (MD) simülasyonu ile, formasyon
ve göç enerjisi enerjileri, alfa Fe'de kendiliğinden oluşan atom (SIA) ve SIA
kümeleri (1 ~ 3 geçiş reklamları) için değerlendirilmiştir. % 0 ~ 3 tek eksenli
sürdürülebilir [100] gerilme etkileri <110> SIAs ve <111> halter
konfigürasyonları için test edilmiştir. Kararlılık ile ilgili olarak,
<111> halter konfigürasyonları daha büyük suşlarda ve daha büyük
kümelerde daha kararlı hale gelir. Hareketlilik için, sürdürülebilir gerilmeler
altında tek SIA kusurlarının difüzyonu izlenmiştir. Serbest gerilme
koşullarında, SIA kümelerinin difüzivitesi, doymuş gerilmede üç boyutlu (3D)
ile bir boyutlu (1D) aşamalı bir geçişe sahiptir. 3D geçiş küçük kümeler ve alt
gerilmeler için iken ve büyük ölçüde <110> SIA hizalama konfigürasyonu
için sunulurken, 1D geçişi büyük kümeler ve büyük gerginlik için gözlenmiştir.
Çekme gerilmesi altında ve küçük kümeler için, difüzyon artırımı daha yüksek
bir sıcaklıkta daha büyüktür. Bununla birlikte, sıcaklık etkisi daha büyük
kümeler için küçüktür. Gerinim alanlarının bu etkileri, kusurlar ve uygulanan
stres alanları arasındaki elastik etkileşim ile açıklanabilir.

References

  • [1]. Wang D., Gao N., Setyawan W., Kurtz R.J., Wang Z.-G., Gao X., He W.-H., Pang L.-L. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation, Chinese Phys. Lett. 33 (2016) 96102.
  • [2]. Banisalman M.J., Park S., Oda T. Evaluation of the threshold displacement energy in tungsten by molecular dynamics calculations, J. Nucl. Mater. 495 (2017) 277–284.
  • [3]. Beeler B., Asta M., Hosemann P., Grønbech-jensen N. Effects of applied strain on radiation damage generation in body- centered cubic iron, J. Nucl. Mater. 459 (2015) 159-165.
  • [4]. Lewis T.A., Gao F., Bacon D.J.. Flewitt P.E.J. The influence of strain on defect generation by displacement cascades in alpha-Fe, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 180 (2001) 187–193
  • [5]. Miyashiro S., Fujita S., Okita T. MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Cu, J. Nucl. Mater. 415 (2011) 1–4.
  • [6]. Fu C., Willaime F. Stability and Mobility of Mono- and Di-Interstitials in -Fe, (2004) 1–4.
  • [7]. Osetsky Y.N., Serra A., Singh B.N., Golubov S.I. Structure and properties of clusters of self- interstitial atoms in fcc copper and bcc iron, 8610 (2017).
  • [8]. Osetsky Y.N. Atomistic study of Diffusional Mass Trasnport in Metals, Defect and Diffsuion Forum (2001) 71–92.
  • [9]. Wirth B.D., Odette G.R., Maroudas D., Lucas G.E. Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron, J. Nucl. Mater. 244 (1997) 185–194
  • [10]. Kang C., Wang Q., Shao L. Kinetics of interstitial defects in a -Fe : The effect from uniaxial stress, J. Nucl. Mater. 485 (2017) 159–168.
  • [11]. Chen Z., Kioussis N., Ghoniem N., Seif D. Strain-field effects on the formation and migration energies of self interstitials in a -Fe from first principles, (2010) 1–10. [12]. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19.
  • [13]. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443–6453.
  • [14]. Mendelev M.I., Han S., Srolovitz D.J., Ackland G.J., Sun D.Y., Asta M. Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag. 83 (2003) 3977–3994.
  • [15]. Alexander K.C., Schuh C.A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool, Model. Simul. INMATERIALS Sci. Eng. 18 (2010) 7.
  • [16]. Terentyev D.A., Malerba L., Hou M. Dimensionality of interstitial cluster motion in bcc-Fe, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 1–13.
  • [17]. Willaime F., Fu C.C., Marinica M.C., Torre J.D. Stability and mobility of self-interstitials and small interstitial clusters in a -iron : ab initio and empirical potential calculations, 228 (2005) 92–99.
  • [18]. Anento N., Serra A., Osetsky Y.N. Atomistic study of multimechanism diffusion by self-interstitial defects in α-Fe, Model. Simul. Mater. Sci. Eng. 18 (2010) 25008.
  • [19]. JOHNSON R.A. Interstitials and Vacancies in a-Iron, Phys. Rev. 134 (1964) A1329 ~ A1336.
  • [20]. Kaczmarowski A., Yang S., Szlufarska I., Morgan D. Genetic algorithm optimization of defect clusters in crystalline materials, Comput. Mater. Sci. 98 (2015) 234–244.

Iron Interstitial Defects Stability: Under the Uniaxial Stress Effect

Year 2018, Volume: 39 Issue: 1, 16 - 22, 16.03.2018
https://doi.org/10.17776/csj.359753

Abstract

Understanding of defect kinetics under stress fields is important for multiscale modeling
of nuclear materials degradation. By means of molecular dynamics (MD)
simulation, the formation and migration energies were evaluated for
self-interstitial atom (SIA) and SIA clusters (1~3 interstitials) in alpha Fe.
Effects of 0~3% uniaxial tensile [100] strains were tested for SIAs of
<110> and <111> dumbbell configurations. 
Regarding the
stability,
the <111> dumbbell configurations becomes more stabilized at larger strains and
larger clusters.
For
the mobility,
the diffusion of single
SIA defects under tensile stresses were traced. Under the free-strain
condition, the diffusivity of the SIA clusters has a gradual transition from
three dimensional (3D) to one dimensional (1D) at saturated strain. The 1D
transition was observed for large clusters and large strain while the 3D
transition was for small clusters and lower strains and presented mainly for
the <110> SIA alignment configuration. Under the tensile stress and for
small clusters, diffusivity enhancement is bigger at a higher temperature.
However, the temperature effect was small for larger clusters. These effects of
strain fields can be explained by elastic interaction between defects and
applied stress fields.

References

  • [1]. Wang D., Gao N., Setyawan W., Kurtz R.J., Wang Z.-G., Gao X., He W.-H., Pang L.-L. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation, Chinese Phys. Lett. 33 (2016) 96102.
  • [2]. Banisalman M.J., Park S., Oda T. Evaluation of the threshold displacement energy in tungsten by molecular dynamics calculations, J. Nucl. Mater. 495 (2017) 277–284.
  • [3]. Beeler B., Asta M., Hosemann P., Grønbech-jensen N. Effects of applied strain on radiation damage generation in body- centered cubic iron, J. Nucl. Mater. 459 (2015) 159-165.
  • [4]. Lewis T.A., Gao F., Bacon D.J.. Flewitt P.E.J. The influence of strain on defect generation by displacement cascades in alpha-Fe, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 180 (2001) 187–193
  • [5]. Miyashiro S., Fujita S., Okita T. MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Cu, J. Nucl. Mater. 415 (2011) 1–4.
  • [6]. Fu C., Willaime F. Stability and Mobility of Mono- and Di-Interstitials in -Fe, (2004) 1–4.
  • [7]. Osetsky Y.N., Serra A., Singh B.N., Golubov S.I. Structure and properties of clusters of self- interstitial atoms in fcc copper and bcc iron, 8610 (2017).
  • [8]. Osetsky Y.N. Atomistic study of Diffusional Mass Trasnport in Metals, Defect and Diffsuion Forum (2001) 71–92.
  • [9]. Wirth B.D., Odette G.R., Maroudas D., Lucas G.E. Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron, J. Nucl. Mater. 244 (1997) 185–194
  • [10]. Kang C., Wang Q., Shao L. Kinetics of interstitial defects in a -Fe : The effect from uniaxial stress, J. Nucl. Mater. 485 (2017) 159–168.
  • [11]. Chen Z., Kioussis N., Ghoniem N., Seif D. Strain-field effects on the formation and migration energies of self interstitials in a -Fe from first principles, (2010) 1–10. [12]. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19.
  • [13]. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984) 6443–6453.
  • [14]. Mendelev M.I., Han S., Srolovitz D.J., Ackland G.J., Sun D.Y., Asta M. Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag. 83 (2003) 3977–3994.
  • [15]. Alexander K.C., Schuh C.A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool, Model. Simul. INMATERIALS Sci. Eng. 18 (2010) 7.
  • [16]. Terentyev D.A., Malerba L., Hou M. Dimensionality of interstitial cluster motion in bcc-Fe, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 1–13.
  • [17]. Willaime F., Fu C.C., Marinica M.C., Torre J.D. Stability and mobility of self-interstitials and small interstitial clusters in a -iron : ab initio and empirical potential calculations, 228 (2005) 92–99.
  • [18]. Anento N., Serra A., Osetsky Y.N. Atomistic study of multimechanism diffusion by self-interstitial defects in α-Fe, Model. Simul. Mater. Sci. Eng. 18 (2010) 25008.
  • [19]. JOHNSON R.A. Interstitials and Vacancies in a-Iron, Phys. Rev. 134 (1964) A1329 ~ A1336.
  • [20]. Kaczmarowski A., Yang S., Szlufarska I., Morgan D. Genetic algorithm optimization of defect clusters in crystalline materials, Comput. Mater. Sci. 98 (2015) 234–244.
There are 19 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Mosab Jaser Banısalman

Takuji Oda

Publication Date March 16, 2018
Submission Date November 30, 2017
Acceptance Date January 31, 2018
Published in Issue Year 2018Volume: 39 Issue: 1

Cite

APA Banısalman, M. J., & Oda, T. (2018). Iron Interstitial Defects Stability: Under the Uniaxial Stress Effect. Cumhuriyet Science Journal, 39(1), 16-22. https://doi.org/10.17776/csj.359753