Research Article
BibTex RIS Cite

Yeni Bir Kompozit Malzeme Kullanılarak Sulu Ortamdaki Katyonik Boya Giderimi

Year 2018, Volume: 39 Issue: 1, 181 - 191, 16.03.2018
https://doi.org/10.17776/csj.356915

Abstract



Bu çalışmada, Poliakrilamid (PAA) ve diatomit
(D) içeren yeni bir kompozit materyal sentezlendi ve bir katyonik boya olan
metilen mavisinin (MB) sulu ortamdaki gideriminde kullanıldı. Elde edilen yeni
kompozit, pliakrilamid-diatomit (PAA-D) sıfır yük noktası (SYN), FTIR
analizleriyle karakterize edildi. Yeni kompozit materyalin adsorpsiyon
özellikleri kapsamlı olarak ve deneysel değişkenler derişim, pH, sıcaklık,
zaman ve iyonik şiddet gibi optimize edilerek araştırılmıştır. Deneysel veriler
teorik adsorpsiyon modelleri kullanılarak hesaplandı. Kompozit materyalin
adsorpsiyon kapasitesi Langmiur eşitliğinden 0.019 mol kg−1 olarak
hesaplandı. Freundlich ve DR modellerinden hesaplanan sabitler 0.075 ve 0.034
olarak bulundu. Adsorpsiyon kinetiği yalanci ikinci derece kinetik ve parçacık
içi difüzyon modelleriyle de açıklandı. Deneysel çalışmalar adsorpsiyonun
endotermik olduğunu ve kendiliğinden meydana geldiğini gösterdi. Yeni
geliştirilen materyal çeşitli ortamlardan atık sular gibi, metilen mavisi
katyonik boyasını gidermek için potansiyel bir adsorban olarak kullanılabilir.

References

  • [1]. Wu. Y.J., Zhang L.J., GaoMa C.L., Ma X.H., Han R.P., Adsorption of copper ions and methylene blue in a single and binary system on wheat straw, J. Chem. Eng. Data, 54 (2009) 3229-3234.
  • [2]. Long C., Yanhui L., Qiuju D., Zonghua W., Yanzhi X., Emily Y., Jun L., Lijie C., High performance agar/graphene oxide composite aerogel for methylene blue removal, Carbohyd. Polym., 155 (2017) 345-353.
  • [3]. Kumar P.S., Romalingam S., Sathishkumar K., Removal ofmethylene blue dye from aqueous solutions by AC preparedfrom cashew nut shell as a new low-cost adsorbents, Korean J. Chem. Eng., 28 (2011) 149-155.
  • [4]. Altundag H., Bina E., Altıntıg E., The levels of traceelements in honey and molasses samples that weredetermined by ICP-OES, Bıol. Trace Elem. Res., 170 (2016) 508-514.
  • [5]. Ghoreishi S.M., Haghighi R., Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chem. Eng. J., 95 (2003) 163-169.
  • [6]. Jain A.K., Gupta V.K., Bhatnagar A., Utilization of industrial waste products as adsorbents for the removal of dyes, J Hazard. Mater., 101 (2003) 31-42.
  • [7]. Derbyshire F., Jagtoyen M., Andrews R., Rao A., Martin-Gullon I., Grulke E., Carbon materials in environmental applications, Chem. Phys. Carbon, 27 (2001) 1-66.
  • [8]. Mohd R., Othman S., Rokiah H., Anees A., Adsorption of methylene blue on low-cost adsorbents: A review, J. Hazard. Mater., 177 (2010) 70-80.
  • [9]. Carboni M., Abney C.W., Taylor-Pashow K.M.L., Vivero-Escoto J.L., Lin W., Uranium sorption with functionalized mesoporous carbon materials, Am. Ceram. Soc., 52 (2013) 15187-15197.
  • [10]. Simsek S., Ulusoy U., Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime, J. Radioanal Nucl. Ch., 292 (2012) 41-51. [11]. Campos B., Agular-Carrillo J., Algarra M., Gonc M.¸ Rodriguez-Castellon E., Silva J.C.G.E., Bobos I., Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material, Appl. Clay Sci., 85 (2013) 53-63.
  • [12]. Caliskan N., Kul A.R., Alkan S., Gokirmak Sogut E., Alacabey İ., Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study, J.Hazard. Mater., 193 (2011) 27-36.
  • [13]. Simsek S., Adsorption properties of lignin containingbentonite-polyacrylamide composite for UO22+ ions, Desalin.Water, 57 (2016) 23790-23799.
  • [14]. Monier M., Abdel-Latif D.A., Synthesis and characterization of ion-imprintedresin based on carboxymethyl cellulose for selective removal of UO22+, Carbohyd. Polym., 97 (2013) 743-752.
  • [15]. Simsek S., Yılmaz E., Boztuğ A., Amine-modified maleic anhydride containingterpolymers for the adsorption of uranly ion aqueous solutions, J. Radioanal Nucl. Ch., 298 (2013) 923-930.
  • [16]. Simsek S., Ulusoy H.I., Effective mercury removal using a new developed polymer containing 2-(2 thiazolylazo) p-cresol, Environ. Eng. Manag. J., 15-11 (2016) 2347-2356.
  • [17]. Simsek S., Senol Z.M., Ulusoy H.I., Synthsis and characterization of a composite polymeric materialincluding chelating agent for adsorption of uranyl ions ions, J.Hazard. Mater., 338 (2017) 437-446.
  • [18]. Al-Ghouti M.A., Khraisheh M.A.M., Allen S.J., Ahmad M.N., The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth, J. Environ. Manag., 69 (2003) 229-238.
  • [19]. Al-Ghouti M.A., Khraisheh M.A.M., Ahmad M.N.M., Allen S., Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study, J. Hazard. Mater., 165 (2009) 589-598.
  • [20]. Madejova J., Janek M., Komadel P., Herbert J., Moog H.C., FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems, Appl. Clay Sci., 20 (2001) 255-271.
  • [21]. Chiem L.T., Huynh L., Ralston J., Beattie D.A., An in situ ATR-FTIR study of polyacrylamide adsorptionat the talc surface, J. Colloid Interf. Sci., 297 (2005) 54-61.
  • [22]. Adhikary P., Tiwari K.N., Singh R.P., Synthesis, Characterization and Flocculation Characteristics of Polyacrylamide-Glycogen, J.Appl. Polymer Sci., 103 (2005) 773-778.
  • [23]. Yuşan S., U(VI) İyonlarının Ham ve Modifiye Edilmiş Diyatomit Üzerine Adsorpsiyon Özelliklerinin Kinetik ve Termodinamik Olarak İncelenmesi, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13 (2016) 761-768.
  • [24]. Weber W.J., Smith E.H., Simulation and design model for adsorptionprocesses, Environ.Sci. & Techn., 21 (1987) 1040-1050.
  • [25]. Liu Y., Shen L., A general rate law equation for biosorption, Biochem. Eng. J., 38 (2008) 390-394.
  • [26]. Neghlani P.K., Rafizadeh M., F.A. Taromi, Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers, J. Hazard.Mater., 186 (2011) 182-189.
  • [27]. Shaban M., Abukhadra M.R., Shahien M.G., Ibrahim S.S., Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes, Environ. Chem. Letter, DOI 10.1007/s10311-017-0658-7
  • [28]. Aia L., Zhangb C., Chena Z., Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene /magnetite composite, J. Hazard. Mater., 192 (2011) 1515-1524.
  • [29]. Auta M., Hameed B.H., Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue, Chem.Eng. J., 237 (2014) 352-361.
  • [30]. Liu Y., Kang Y., Mua B., Wang A., Attapulgite/bentonite interactions for methylene blue adsorption characteristics from aqueous solution, Chem.Eng. J., 237 (2014) 403-410.
  • [31]. Li Y., Du Q., Liu T., Sun J., Wang Y., Wu S., Wang Z., Xia Y., Xia L., Methylene blue adsorption on graphene oxide/calcium alginate composites, Carbohyd. Polym., 95 (2013) 501-507.
  • [32]. Li J., Fenga J., Yana W., Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue, Appl.Surf. Sci., 279 (2013) 400-408.
  • [33]. Bulut Y., Karaer H., Adsorption of Methylene Blue from Aqueous Solution by Crosslinked Chitosan/Bentonite Composite, J.Dispers. Sci. Techn., 36 (2015) 61-67. [34]. Marrakchia F., Khandaya W.A., Asif M., Hameed B.H., Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16, Int. J. Biol. Macromol., 93 (2016) 1231-1239.
  • [35]. Ayad M. M., El-Nasr A.A., Stejskal J. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite, J.. Eng.Chem., 18 (2012) 1964-1969.

Removal of Cationic Dye in Aquatic Medium by Using a New Composite Material

Year 2018, Volume: 39 Issue: 1, 181 - 191, 16.03.2018
https://doi.org/10.17776/csj.356915

Abstract



In this study, a new composite material containing polyacrylamide (PAA) and diatomite
(D) was developed and characterized for effective removal of Methylene Blue
(MB) dye in aquatic medium. The obtained new composite material, polyacrylamide-diatomite (PAA-D) was characterized by
point zero charge (PZC), FTIR analysis.
The adsorption properties of new composite
material were investigated comprehensively and experimental variables were
optimized such as concentration, pH, temperature, time and ionic strength.
Experimental data were evaluated by using theoretical adsorption models. The
maximum adsorption capacity of material was calculated as 0.019 mol kg−1
by considering Langmuir equation. The constants calculated from Freundlich and
DR model were found as 0.075 and 0.034, respectively. Adsorption kinetic was
also explained with pseudo second order and intra particular diffusion models.
Experimental studies were showed that adsorption was endothermic and occurred
spontaneously. New developed material can be used as potential adsorbent in
order to removal of methylene blue from various medium such as wastewater.

References

  • [1]. Wu. Y.J., Zhang L.J., GaoMa C.L., Ma X.H., Han R.P., Adsorption of copper ions and methylene blue in a single and binary system on wheat straw, J. Chem. Eng. Data, 54 (2009) 3229-3234.
  • [2]. Long C., Yanhui L., Qiuju D., Zonghua W., Yanzhi X., Emily Y., Jun L., Lijie C., High performance agar/graphene oxide composite aerogel for methylene blue removal, Carbohyd. Polym., 155 (2017) 345-353.
  • [3]. Kumar P.S., Romalingam S., Sathishkumar K., Removal ofmethylene blue dye from aqueous solutions by AC preparedfrom cashew nut shell as a new low-cost adsorbents, Korean J. Chem. Eng., 28 (2011) 149-155.
  • [4]. Altundag H., Bina E., Altıntıg E., The levels of traceelements in honey and molasses samples that weredetermined by ICP-OES, Bıol. Trace Elem. Res., 170 (2016) 508-514.
  • [5]. Ghoreishi S.M., Haghighi R., Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chem. Eng. J., 95 (2003) 163-169.
  • [6]. Jain A.K., Gupta V.K., Bhatnagar A., Utilization of industrial waste products as adsorbents for the removal of dyes, J Hazard. Mater., 101 (2003) 31-42.
  • [7]. Derbyshire F., Jagtoyen M., Andrews R., Rao A., Martin-Gullon I., Grulke E., Carbon materials in environmental applications, Chem. Phys. Carbon, 27 (2001) 1-66.
  • [8]. Mohd R., Othman S., Rokiah H., Anees A., Adsorption of methylene blue on low-cost adsorbents: A review, J. Hazard. Mater., 177 (2010) 70-80.
  • [9]. Carboni M., Abney C.W., Taylor-Pashow K.M.L., Vivero-Escoto J.L., Lin W., Uranium sorption with functionalized mesoporous carbon materials, Am. Ceram. Soc., 52 (2013) 15187-15197.
  • [10]. Simsek S., Ulusoy U., Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime, J. Radioanal Nucl. Ch., 292 (2012) 41-51. [11]. Campos B., Agular-Carrillo J., Algarra M., Gonc M.¸ Rodriguez-Castellon E., Silva J.C.G.E., Bobos I., Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material, Appl. Clay Sci., 85 (2013) 53-63.
  • [12]. Caliskan N., Kul A.R., Alkan S., Gokirmak Sogut E., Alacabey İ., Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study, J.Hazard. Mater., 193 (2011) 27-36.
  • [13]. Simsek S., Adsorption properties of lignin containingbentonite-polyacrylamide composite for UO22+ ions, Desalin.Water, 57 (2016) 23790-23799.
  • [14]. Monier M., Abdel-Latif D.A., Synthesis and characterization of ion-imprintedresin based on carboxymethyl cellulose for selective removal of UO22+, Carbohyd. Polym., 97 (2013) 743-752.
  • [15]. Simsek S., Yılmaz E., Boztuğ A., Amine-modified maleic anhydride containingterpolymers for the adsorption of uranly ion aqueous solutions, J. Radioanal Nucl. Ch., 298 (2013) 923-930.
  • [16]. Simsek S., Ulusoy H.I., Effective mercury removal using a new developed polymer containing 2-(2 thiazolylazo) p-cresol, Environ. Eng. Manag. J., 15-11 (2016) 2347-2356.
  • [17]. Simsek S., Senol Z.M., Ulusoy H.I., Synthsis and characterization of a composite polymeric materialincluding chelating agent for adsorption of uranyl ions ions, J.Hazard. Mater., 338 (2017) 437-446.
  • [18]. Al-Ghouti M.A., Khraisheh M.A.M., Allen S.J., Ahmad M.N., The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth, J. Environ. Manag., 69 (2003) 229-238.
  • [19]. Al-Ghouti M.A., Khraisheh M.A.M., Ahmad M.N.M., Allen S., Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study, J. Hazard. Mater., 165 (2009) 589-598.
  • [20]. Madejova J., Janek M., Komadel P., Herbert J., Moog H.C., FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems, Appl. Clay Sci., 20 (2001) 255-271.
  • [21]. Chiem L.T., Huynh L., Ralston J., Beattie D.A., An in situ ATR-FTIR study of polyacrylamide adsorptionat the talc surface, J. Colloid Interf. Sci., 297 (2005) 54-61.
  • [22]. Adhikary P., Tiwari K.N., Singh R.P., Synthesis, Characterization and Flocculation Characteristics of Polyacrylamide-Glycogen, J.Appl. Polymer Sci., 103 (2005) 773-778.
  • [23]. Yuşan S., U(VI) İyonlarının Ham ve Modifiye Edilmiş Diyatomit Üzerine Adsorpsiyon Özelliklerinin Kinetik ve Termodinamik Olarak İncelenmesi, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13 (2016) 761-768.
  • [24]. Weber W.J., Smith E.H., Simulation and design model for adsorptionprocesses, Environ.Sci. & Techn., 21 (1987) 1040-1050.
  • [25]. Liu Y., Shen L., A general rate law equation for biosorption, Biochem. Eng. J., 38 (2008) 390-394.
  • [26]. Neghlani P.K., Rafizadeh M., F.A. Taromi, Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers, J. Hazard.Mater., 186 (2011) 182-189.
  • [27]. Shaban M., Abukhadra M.R., Shahien M.G., Ibrahim S.S., Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes, Environ. Chem. Letter, DOI 10.1007/s10311-017-0658-7
  • [28]. Aia L., Zhangb C., Chena Z., Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene /magnetite composite, J. Hazard. Mater., 192 (2011) 1515-1524.
  • [29]. Auta M., Hameed B.H., Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue, Chem.Eng. J., 237 (2014) 352-361.
  • [30]. Liu Y., Kang Y., Mua B., Wang A., Attapulgite/bentonite interactions for methylene blue adsorption characteristics from aqueous solution, Chem.Eng. J., 237 (2014) 403-410.
  • [31]. Li Y., Du Q., Liu T., Sun J., Wang Y., Wu S., Wang Z., Xia Y., Xia L., Methylene blue adsorption on graphene oxide/calcium alginate composites, Carbohyd. Polym., 95 (2013) 501-507.
  • [32]. Li J., Fenga J., Yana W., Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue, Appl.Surf. Sci., 279 (2013) 400-408.
  • [33]. Bulut Y., Karaer H., Adsorption of Methylene Blue from Aqueous Solution by Crosslinked Chitosan/Bentonite Composite, J.Dispers. Sci. Techn., 36 (2015) 61-67. [34]. Marrakchia F., Khandaya W.A., Asif M., Hameed B.H., Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16, Int. J. Biol. Macromol., 93 (2016) 1231-1239.
  • [35]. Ayad M. M., El-Nasr A.A., Stejskal J. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite, J.. Eng.Chem., 18 (2012) 1964-1969.
There are 33 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Zeynep Mine Hasdemir

Selçuk Şimşek

Publication Date March 16, 2018
Submission Date November 22, 2017
Acceptance Date January 15, 2018
Published in Issue Year 2018Volume: 39 Issue: 1

Cite

APA Hasdemir, Z. M., & Şimşek, S. (2018). Removal of Cationic Dye in Aquatic Medium by Using a New Composite Material. Cumhuriyet Science Journal, 39(1), 181-191. https://doi.org/10.17776/csj.356915