Research Article
BibTex RIS Cite

Examination of Rheological Behavior of Water-Based Graphene Oxide Nanofluids

Year 2017, Volume: 38 Supplement Issue 4, 176 - 183, 08.12.2017
https://doi.org/10.17776/csj.358469

Abstract

In
this study, the rheological properties of nanofluids obtained by loading of
Graphene oxide nanoparticles produced by the improved Hummers method into the deionized
water base fluid in a mass fraction range of 0.1-1% were investigated.
The stability analysis of the nanofluids were conducted
through considering the zeta potential measurement values, and all nanofluids
were determined as quite stable.
Rheological measurements were carried out at 5°C, 15°C, 25°C, and 35°C
with using stress-controlled rheometer. Rheological measurements were conducted
for two different methods, nonlinear viscoelastic and linear viscoelastic
measurements. In nonlinear viscoelastic experiments, the variation of viscosity
with the shear rate of the fluid was investigated for both different nanoparticles
mass fractions and a fixed constant mass fraction at different temperatures. In
the second type of experiments, the elastic behavior of the fluid was
determined by measuring frequency-dependent storage G ' and loss modulus G
" under small oscillation shear stress. As
a result of detailed rheological analysis, 
it was determined that water based graphene oxide nanofluids containing
nanoparticles mass fractions of 0.1% shows a flow behavior that conforms  to the Newton’s rule, whereas, due 
to the increase of graphene oxide mass fractions, the flow
behavior changes to the pseudoplastic behavior that does not conform to the
Newton's rule.
In addition, at high graphene oxide mass fractions, it was seen
that the visible viscosity decreased with the increasing temperature. As a
result of the conducted linear rheological measurements, it was observed that
nanofluids having high concentrated nanoparticle showed viscoelastic behavior
properties.

References

  • [1]. Choi S.U.S., Eastman J.A., Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress&Exposition, , San Francisco, CA, 1995.
  • [2]. Yanwu Z., Murali S., Cai W., Li X.,. Suk J.W, Potts J.R., Ruoff R.S., Graphene and Graphene oxide synthesis, Properties and applications, Adv. Materials, 2010, 22,3906.
  • [3]. Ettefaghi E., Rashidi A., Ahmadi H., Mahtasebi S.S., Pourkhalil M., Thermal and rheological properties of oil-based nanofluids different carbon nanostructures, Int. Comm. Heat and Mass 2013,48,178-82.
  • [4]. Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E., Grulke E.A., Anomalous thermal conductivity enhancement in nanotube suspensions, AppliedPhys. Letter, 2001, 79,141, 2252-4.
  • [5]. Kakac S., Pramuanjaroenkij A., A Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass transfer, 2009, 52,3187-96.
  • [6]. Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J., Anomaously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Letter, 2001, 78, 718-20.
  • [7]. Tiwari A.K., Ghosh P., Sarkar J., Particle concentration levels of various nanofluids in plate heat exchanger for best performance, Int. J. Heat Mass Transfer, 2015, 89, 110-8.
  • [8]. Morrison F.A., Understanding Rheology, NY, Oxford University, 2001.
  • [9]. Meng Z., Wu D., Wang L., Zhu H., Li Q,, Carbon nanotube glcol nanofluids: photo-thermal properties, Thermal conductivities and rhelogical behaviour Particuology 2012, 10,614-8.
  • [10]. Duan F., Wong T.F., Crivoi A., Dynamic viscosity measurement in Newtonian graphite nanofluids, Nanoscale Res. Lett. 2012,7,360.
  • [11]. Moghaddam M.B., Goharshadi E.K., Entezari M.H., Nacarrow P., Preparation, characterization and rheological properties of graphene-glycerol nanofluids, Chem. Eng. J., 2013, 365-72.
  • [12]. Hummers J.R.S., Offeman R.E., Preparation of graphitic oxide, Journal of the American Chemical Society, 1958,80,1339.
  • [13]. Kyotani T., Moriyama H., Tomita A., High temperature treatment of polyfurfuryl alcohol/graphite oxide intercalation compound, Carbon,1997, 35, 1185-1187.
  • [14]. Manivela P., Kanagarajb S., Balamurungana A., Ponpandiana N., Mangalaraja D., Viswanathana C., Rheological behavior and electrical properties of polypyrrole/thermally reduced graphene oxide nanocomposite, Colloids and surfaces A: Physicochemical and Engineering Aspects, 441,20614-622.
  • [15]. Tesfai W., Singh P., Shatilla Y., Iqpal M.Z., Abdala A.A., Rhelogy and microstructure of dilute graphene oxide suspension, J. Nanopart Res. 2013, 15,1989.
  • [16]. Park S.D., Lee S.W., Kang S., Kim S.M., Bang I.C., Pool Boiling CHF Enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments, Nuclear Engineerig and design, 2012, 184-191.
  • [17]. Wang J., Zhu J., Zhang X., Chen Y., Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows, Exp. Therm. Fluid Sci. 2013, 44,716-21.
  • [18]. Mehrali M., Sadeghinezhad E., Latibari S.T., Kazi S.N., Mehrali M., Zubir M.N.B.M, Metselaar H.S.C., Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, Nanoscale Res. Lett., 2014, 9,15.
  • [19]. Rashin M.N., Hemalatha J., Viscosity studies on novel copper oxide–coconut oil nanofluid’, Experimental Thermal and Fluid Science, 2013,48, 67-42.
  • [20]. Yapici K., Cakmak N.K., Ilhan N., Uludag Y., Rheological characterization of polyethylene glycol based TiO2 nanofluids, Korea Aust. Rheol. J., 2014,26, 355-363.
  • [21]. Cakmak N. K., Temel Ü.N., Ova O., Yapıcı, K. 2016 Su tabanlı grafen oksit nanoakışkanının reolojik davranışlarının incelenmesi, Ulusal Kimya Mühendisliği Kongresi, Özet Bildiri.

Grafen Oksit-Su Nanoakışkanlarının Reolojik Davranışlarının İncelenmesi

Year 2017, Volume: 38 Supplement Issue 4, 176 - 183, 08.12.2017
https://doi.org/10.17776/csj.358469

Abstract

Bu çalışmada iyileştirilmiş Hummers metodu ile üretilen
Grafen oksit  nanoparçacıkların kütlece
%0.1-1 bölüntülerinde su taban akışkanı içerisine katkılanması suretiyle elde
edilen nanoakışkanların reolojik özellikleri incelenmiştir. Nanoakışkanların
kararlılık analizi zeta potansiyel ölçüm değerleri göz önüne alınarak gerçekleştirilmiş
olup tüm nanoakışkanların oldukça kararlı oldukları belirlenmiştir. R
eolojik ölçümler stress kontrollü reometre kullanılarak
 
5οC,
15οC, 25οC, 35οC sıcaklıklarda
gerçekleştirilmiştir. Reolojik ölçümler, doğrusal olmayan viskoelastik ve
doğrusal viskoelastik ölçümler olmak üzere iki farklı yöntem için
yürütülmüştür. Doğrusal olmayan viskoelastik deneylerde akışkanın kayma hızına
karşı viskozitesinin değişimi, hem farklı nanoparçacık kütle bölüntüleri için
hemde sabit bir kütle bölüntüsünde farklı sıcaklıklar için incelenmiştir.
İkinci tip deneylerde ise frekans bağımlı depolama G
ve kayıp modülü G, küçük salınım kayma gerilimi altında
ölçülerek akışkanın
elastik davranışı belirlenmiştir. Gerçekleştirilen
detaylı
reolojik analizler sonucunda; kütlece %0.1 bölüntüde grafen
oksit nanoparçacık katkılanan 
nanoakışkanın Newton kuralına uyan akış davranışı gösterdiği buna
karşılık grafen oksit kütle bölüntüsünün artmasına bağlı olarak akış
davranışının değişerek Newton kuralına uymayan
sanki-plastik davranışına dönüştüğü belirlenmiştir. Buna ek olarak yüksek
grafen oksit kütle bölüntülerinde, görünür viskozitenin
artan sıcaklıkla azaldığı görülmüştür. Gerçekleştirilen doğrusal reolojik
ölçümler sonucunda yüksek bölüntülerde grafen oksit katkılanan nanoakışkanların,
viskoelastik davranış özelliği gösterdiği gözlenmiştir
.

References

  • [1]. Choi S.U.S., Eastman J.A., Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress&Exposition, , San Francisco, CA, 1995.
  • [2]. Yanwu Z., Murali S., Cai W., Li X.,. Suk J.W, Potts J.R., Ruoff R.S., Graphene and Graphene oxide synthesis, Properties and applications, Adv. Materials, 2010, 22,3906.
  • [3]. Ettefaghi E., Rashidi A., Ahmadi H., Mahtasebi S.S., Pourkhalil M., Thermal and rheological properties of oil-based nanofluids different carbon nanostructures, Int. Comm. Heat and Mass 2013,48,178-82.
  • [4]. Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E., Grulke E.A., Anomalous thermal conductivity enhancement in nanotube suspensions, AppliedPhys. Letter, 2001, 79,141, 2252-4.
  • [5]. Kakac S., Pramuanjaroenkij A., A Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass transfer, 2009, 52,3187-96.
  • [6]. Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J., Anomaously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Letter, 2001, 78, 718-20.
  • [7]. Tiwari A.K., Ghosh P., Sarkar J., Particle concentration levels of various nanofluids in plate heat exchanger for best performance, Int. J. Heat Mass Transfer, 2015, 89, 110-8.
  • [8]. Morrison F.A., Understanding Rheology, NY, Oxford University, 2001.
  • [9]. Meng Z., Wu D., Wang L., Zhu H., Li Q,, Carbon nanotube glcol nanofluids: photo-thermal properties, Thermal conductivities and rhelogical behaviour Particuology 2012, 10,614-8.
  • [10]. Duan F., Wong T.F., Crivoi A., Dynamic viscosity measurement in Newtonian graphite nanofluids, Nanoscale Res. Lett. 2012,7,360.
  • [11]. Moghaddam M.B., Goharshadi E.K., Entezari M.H., Nacarrow P., Preparation, characterization and rheological properties of graphene-glycerol nanofluids, Chem. Eng. J., 2013, 365-72.
  • [12]. Hummers J.R.S., Offeman R.E., Preparation of graphitic oxide, Journal of the American Chemical Society, 1958,80,1339.
  • [13]. Kyotani T., Moriyama H., Tomita A., High temperature treatment of polyfurfuryl alcohol/graphite oxide intercalation compound, Carbon,1997, 35, 1185-1187.
  • [14]. Manivela P., Kanagarajb S., Balamurungana A., Ponpandiana N., Mangalaraja D., Viswanathana C., Rheological behavior and electrical properties of polypyrrole/thermally reduced graphene oxide nanocomposite, Colloids and surfaces A: Physicochemical and Engineering Aspects, 441,20614-622.
  • [15]. Tesfai W., Singh P., Shatilla Y., Iqpal M.Z., Abdala A.A., Rhelogy and microstructure of dilute graphene oxide suspension, J. Nanopart Res. 2013, 15,1989.
  • [16]. Park S.D., Lee S.W., Kang S., Kim S.M., Bang I.C., Pool Boiling CHF Enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments, Nuclear Engineerig and design, 2012, 184-191.
  • [17]. Wang J., Zhu J., Zhang X., Chen Y., Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows, Exp. Therm. Fluid Sci. 2013, 44,716-21.
  • [18]. Mehrali M., Sadeghinezhad E., Latibari S.T., Kazi S.N., Mehrali M., Zubir M.N.B.M, Metselaar H.S.C., Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, Nanoscale Res. Lett., 2014, 9,15.
  • [19]. Rashin M.N., Hemalatha J., Viscosity studies on novel copper oxide–coconut oil nanofluid’, Experimental Thermal and Fluid Science, 2013,48, 67-42.
  • [20]. Yapici K., Cakmak N.K., Ilhan N., Uludag Y., Rheological characterization of polyethylene glycol based TiO2 nanofluids, Korea Aust. Rheol. J., 2014,26, 355-363.
  • [21]. Cakmak N. K., Temel Ü.N., Ova O., Yapıcı, K. 2016 Su tabanlı grafen oksit nanoakışkanının reolojik davranışlarının incelenmesi, Ulusal Kimya Mühendisliği Kongresi, Özet Bildiri.
There are 21 citations in total.

Details

Journal Section Engineering Sciences
Authors

Neşe Keklikcioğlu Çakmak

Ümit Nazlı Temel

Kerim Yapıcı

Publication Date December 8, 2017
Submission Date May 2, 2017
Acceptance Date November 19, 2017
Published in Issue Year 2017Volume: 38 Supplement Issue 4

Cite

APA Keklikcioğlu Çakmak, N., Temel, Ü. N., & Yapıcı, K. (2017). Examination of Rheological Behavior of Water-Based Graphene Oxide Nanofluids. Cumhuriyet Science Journal, 38(4), 176-183. https://doi.org/10.17776/csj.358469