Research Article
BibTex RIS Cite
Year 2021, , 688 - 693, 24.09.2021
https://doi.org/10.17776/csj.935566

Abstract

References

  • [1] Mohan R., Grosshans D., Proton therapy - Present and future, Advanced Drug Delivery Reviews, 109 (2017) 26-44.
  • [2] Riley B., Peaking ınto the future with proton therapy, Journal of Radiology Nursing, 26(4) (2007) 115-120.
  • [3] Didi A., Dekhissi H., Sebihi R., Krim M., & Mohamed R. M., Calculate primary and secondary dose in proton therapy using 200 and 250 MeV proton beam energy, The Physics of the Atomic Nucleus and Elementary Particles, 74 (2019) 364-368.
  • [4] Ardenfors O., Dasu A., Lillhök J., Persson L., Gudowska I., Out-of-field doses from secondary radiation produced in proton therapy and the associated risk of radiation-induced cancer from a brain tumor treatment, Physica Medica, 53 (2018) 129-136.
  • [5] Jia S. B., Hadizadeh M. H., Mowlavi A. A., Loushab M. E., Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom, Reports of Practical Oncology & Radiotherapy, 19(6) (2014) 376-384.
  • [6] Slimani F. A. A., Hamdi M., Bentourkia M., G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy, Computerized Medical Imaging and Graphics, 67 (2018) 30-39.
  • [7] Snyder W. S., Ford M. R., Warner G. G., MIRD Pamphlet No. 5 Revised, Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom, Journal of Nuclear Medicine, 3 (1969) 5-52.
  • [8] Rene Brun and Fons Rademakers, ROOT-An Object Oriented Data Analysis Framework, Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst.&Meth. In Phys. Res. A 389 (1997) 81-86. See also [root.cern.ch/ ] (http://root.cern.ch/).
  • [9] Sarrut D., Bardies M., Boussion N., Freud N., Jan S., Letang J. M., Loudos G., Maigne L., Marcatili S., Mauxion T., Papadimitroulas P., Perrot Y., Pietrzyk U., Robert C., Schaart D. R., Visvikis D., Buvat I., A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Medical Physics, 41(6) (2014).
  • [10] Baldacci F., Mittone A., Bravin A., Coan P., Delaire F., Ferrero C., Gasilov S., Letang J. M., Sarrut D., Smekens F., Freud N., A track length estimator method for dose calculations in low-energy X-ray irradiations: implementation, properties and performance, Zeitschrift für Medizinische Physik, 25(1) (2015) 36-47.
  • [11] Riley B., Peaking Into the Future Wıth Proton Therapy, Journal of Radiology Nursing, 26(4) (2007) 115-120.
  • [12] Liu H., Chang J. Y., Proton therapy in clinical practice, Chinese Journal of Cancer, 30(5) (2011) 315-326.
  • [13] Elazhar H., Deschler T., Letang J. M., Nourreddine A., Arbor N., Neutron track lenght estimatör for GATE Monte Carlo dose calculation in radiotherapy, Physics In Medicine and Biology, 63(12) (2018).

Measurement of out of field doses in brain proton therapy with GATE simulations

Year 2021, , 688 - 693, 24.09.2021
https://doi.org/10.17776/csj.935566

Abstract

Proton therapy as one of the radiotherapy applications, aims to treat the tumor by using the accelerated proton particle. High radiation dose distributions delivered to the tumor tissue, is characterized with Bragg curves, while the radiation in the tissues surrounding the tumor is expected to be as low as possible. In our study, proton treatment of the tumor volume placed in the brain created by GATE software was simulated. The absorbed doses in other organs created by GATE software during treatment were determined using DoseActor and TLEDoseActor algorithms. Nuclear interactions of the accelerated proton with the nucleus of the target atom make the target atom reactive and cause secondary radiation. Similar to the TLEDoseActor algorithm, NTLE algorithm was used to determine the doses caused by neutrons from these secondary radiations. With the algorithms used, out-of-field doses and secondary doses for proton beams at 250 MeV energy were determined. It is important to determine the secondary radiations caused by the interaction of the proton with the tissue and to determine the doses out of the field. These results may be helpful in determining and preventing secondary cancer formation in proton therapy in clinical applications.

References

  • [1] Mohan R., Grosshans D., Proton therapy - Present and future, Advanced Drug Delivery Reviews, 109 (2017) 26-44.
  • [2] Riley B., Peaking ınto the future with proton therapy, Journal of Radiology Nursing, 26(4) (2007) 115-120.
  • [3] Didi A., Dekhissi H., Sebihi R., Krim M., & Mohamed R. M., Calculate primary and secondary dose in proton therapy using 200 and 250 MeV proton beam energy, The Physics of the Atomic Nucleus and Elementary Particles, 74 (2019) 364-368.
  • [4] Ardenfors O., Dasu A., Lillhök J., Persson L., Gudowska I., Out-of-field doses from secondary radiation produced in proton therapy and the associated risk of radiation-induced cancer from a brain tumor treatment, Physica Medica, 53 (2018) 129-136.
  • [5] Jia S. B., Hadizadeh M. H., Mowlavi A. A., Loushab M. E., Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom, Reports of Practical Oncology & Radiotherapy, 19(6) (2014) 376-384.
  • [6] Slimani F. A. A., Hamdi M., Bentourkia M., G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy, Computerized Medical Imaging and Graphics, 67 (2018) 30-39.
  • [7] Snyder W. S., Ford M. R., Warner G. G., MIRD Pamphlet No. 5 Revised, Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom, Journal of Nuclear Medicine, 3 (1969) 5-52.
  • [8] Rene Brun and Fons Rademakers, ROOT-An Object Oriented Data Analysis Framework, Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst.&Meth. In Phys. Res. A 389 (1997) 81-86. See also [root.cern.ch/ ] (http://root.cern.ch/).
  • [9] Sarrut D., Bardies M., Boussion N., Freud N., Jan S., Letang J. M., Loudos G., Maigne L., Marcatili S., Mauxion T., Papadimitroulas P., Perrot Y., Pietrzyk U., Robert C., Schaart D. R., Visvikis D., Buvat I., A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Medical Physics, 41(6) (2014).
  • [10] Baldacci F., Mittone A., Bravin A., Coan P., Delaire F., Ferrero C., Gasilov S., Letang J. M., Sarrut D., Smekens F., Freud N., A track length estimator method for dose calculations in low-energy X-ray irradiations: implementation, properties and performance, Zeitschrift für Medizinische Physik, 25(1) (2015) 36-47.
  • [11] Riley B., Peaking Into the Future Wıth Proton Therapy, Journal of Radiology Nursing, 26(4) (2007) 115-120.
  • [12] Liu H., Chang J. Y., Proton therapy in clinical practice, Chinese Journal of Cancer, 30(5) (2011) 315-326.
  • [13] Elazhar H., Deschler T., Letang J. M., Nourreddine A., Arbor N., Neutron track lenght estimatör for GATE Monte Carlo dose calculation in radiotherapy, Physics In Medicine and Biology, 63(12) (2018).
There are 13 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Melisa Sönmez 0000-0001-6446-4195

Sinan Kuday 0000-0002-0116-5494

Publication Date September 24, 2021
Submission Date May 10, 2021
Acceptance Date June 22, 2021
Published in Issue Year 2021

Cite

APA Sönmez, M., & Kuday, S. (2021). Measurement of out of field doses in brain proton therapy with GATE simulations. Cumhuriyet Science Journal, 42(3), 688-693. https://doi.org/10.17776/csj.935566