Research Article
BibTex RIS Cite
Year 2021, , 616 - 628, 24.09.2021
https://doi.org/10.17776/csj.926989

Abstract

References

  • [1] Barisione G., Baroffio M., Crimi E., Brusasco V., Beta-Adrenergic Agonists, Pharmaceuticals, 3 (2010) 1016–1044.
  • [2] Shihab A. I., Al-Sabha N. T., Application of Cloud Point Method for Spectrophotometric Determination of Salbutamol Sulphate and Methyldopa, Pak. J. Anal. Environ. Chem., 21 (1) (2020) 10-18.
  • [3] Balanag V.M., Yunus F., Yang P.C., Jorup C., Efficacy and safety of budesonide formoterol compared with salbutamol in the treatment of acute asthma, Pulm. Pharmacol. Ther., 19 (2) (2006) 139–147.
  • [4] El-Enany N., Belal F., Rizk M., A simple kinetic spectrophotometric method for the determination of salbutamol in dosage forms, Chem. Anal. (Warsaw, Poland) 49 (4) (2004) 587-599.
  • [5] Habib I.H.I., Hassouna M.E.M., Zaki G.A., Simultaneous Spectrophotometric Determination of Salbutamol and Bromhexine in Tablets, Il Farmaco, 60 (3) (2005) 249-254.
  • [6] Kalyani L., Chava V.N. Rao, Simultaneous spectrophotometric estimation of Salbutamol, Theophylline and Ambroxol three component tablet formulation using simultaneous equation methods, Karbala International Journal of Modern Science, 4(1) (2018) 171-179.
  • [7] Ayad M. M., Abdellatef H. E., Hosny M. M., Abdel-Sattar Kabil N., Spectrophotometric Determination of Etilefrine HCl, Salbutamol Sulphate and Tiemonium Methyl Sulphate Using Surface Plasmon Resonance Band of Gold Nanoparticles, Nano Biomed. Eng., 10(1) (2018) 16-24.
  • [8] R'afat M. N., Mahmoud M. I., Mozer H. AL-K., Akila A. S., Alaa A. S., Raluca van S. I. S., Hassan Y. A.-E., Development and validation of kinetic and atomic absorption spectrophotometric methods for the determination of salbutamol sulfate, RSC Advances, 5(70) (2015) 57164–57170.
  • [9] Gabiola C., Garcia-Calonge M.A., Portillo M.P., Martinez J.A., del Barrio A.S., Validation of a method for the determination of salbutamol in animal urine by gas chromatography‐mass spectrometry and its application to treated lamb samples, J. Microcol., 8(5) (1996) 361-364.
  • [10] Liu H., Gan N., Chen Y., Ding Q., Huang J., Lin S., Cao Y., Li T., Novel method for the rapid and specific extraction of multiple β-agonist residues in food by tailor-made monolith-MIPs extraction disks and detection by gas chromatography with mass spectrometry, J Sep Sci., 39(18) (2016) 3578–3585
  • [11] Sutariya V.B., Mashru R.C., Sankalia M.G., Sankalia J.M., Liquid chromatographic determination and pharmacokinetics study of salbutamol sulphate in rabbit plasma, ArsPharm., 47(2) (2006) 185-197.
  • [12] Kulikovskii AV, Lisitsyn AB, Gorlov IF, Slozhenkina MI, Savchuk SA. Determination of growth hormones (β-agonists) in muscle tissue by HPLC with mass spectrometric detection, J Anal Chem., 71(10) (2016) 1052–1056.
  • [13] Chang K.-C., Chang Y.-T., Tsai C.-E., Determination of ractopamine and salbutamol in pig hair by liquid chromatography tandem mass spectrometry, Journal of Food and Drug Analysis, 26(2) (2018) 725-730.
  • [14] Zhang L.Y., Chang B.Y., Dong T., He P.L., Yang W.J., Wang Z.Y., Simultaneous Determination of Salbutamol, Ractopamine, and Clenbuterol in Animal Feeds by SPE and LC–MS, Journal of Chromatographic Science, 47(4) (2009) 324-328.
  • [15] Chan S.H., Lee W., Asmawi M.Z., Tan S.C., Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples, J. Chromatogr. B., 1025 (2016) 83–91.
  • [16] Changguo C., Hong L., Yujing F., Determination of salbutamol sulfate in medicaments by capillary electrophoresis with contactless conductivity detection, Chin. J. Chromatogr., 29(2) (2011) 137–140.
  • [17] Sirichai S., Khanatharana P., Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis, Talanta, 76(5) (2008) 1194–1198.
  • [18] Nguyen T.A.H., Pham T.N.M., Doan T.T., Ta T.T., Saiz J., Nguyen T.Q.H., Hauser P.C., Mai T.D., Simple semi-automated portable capillary electrophoresis instrument with contactless conductivity detection for the determination of beta-agonists in pharmaceutical and pig-feed samples, J. Chromatogr. A., 1360 (2014) 305–311.
  • [19] Lodén H., Pettersson C., Arvidsson T., Amini A., Quantitative determination of salbutamol in tablets by multiple-injection capillary zone electrophoresis, J. Chromatogr. A., 1207 (1-2) (2008) 181–185.
  • [20] Chen Q., Fan L.-Y., Zhang W., Cao C.-X., Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment, Talanta, 76(2) (2008) 282–287.
  • [21] Lindino C.A., Bulhões L.O.S., Determination of fenoterol and salbutamol in pharmaceutical formulations by electrogenerated Chemiluminescence, Talanta, 72(5) (2007) 1746-1751.
  • [22] Barnett N. W., Hindson B. J., Lewis S. W., Determination of Ranitidine and Salbutamol by Flow Injection Analysis with Chemiluminescence Detection, Analytica Chimica, 384(2) (1999) 151-158.
  • [23] Demir E., İnam O., İnam R., Determination of ophthalmic drug proparacaine using multi-walled carbon nanotube paste electrode by square wave stripping voltammetry, Analytical Sciences, 34 (2018) 771-776.
  • [24] İnam O., Demir E., Uslu B., Voltammetric Pathways for the Analysis of Ophthalmic Drugs, Current Pharmaceutical Analysis, 16 (2020) 367-391.
  • [25] Güngör Ö., Kılıç B., Karasürmeli T.S., Özcan İ., Köytepe S., Voltammetric determination of alpha lipoic acid using chitosan-based polyurethane membrane electrode, Measurement, 182 (2021) 109752.
  • [26] Amare M., Menkir G., Differential pulse voltammetric determination of salbutamol sulfate in syrup pharmaceutical formulation using poly(4-amino-3- hydroxynaphthalene sulfonic acid) modified glassy carbon electrode, Heliyon, 3(10) (2017) e00417.
  • [27] Goyal R.N., Oyama M., Singh S.P., Fast determination of salbutamol, abused by athletes for doping, in pharmaceuticals and human biological fluids by square wave voltammetry, J. Electroanal. Chem., 611(1-2) (2007) 140–148.
  • [28] Goyal R.N., Kaur D., Singh S.P., Pandey A.K., Effect of graphite and metallic impurities of C60 fullerene on determination of salbutamol in biological fluids, Talanta, 75(1) (2008) 63–69.
  • [29] Li J., Xu Z., Liu M., Deng P., Tang S., Jiang J., Feng H., Qian D., He L., Ag/N-doped reduced graphene oxide incorporated with molecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination, Biosensors and Bioelectronics, 90 (2017) 210-216.
  • [30] Miller J.C., Miller J.N., Statistics for Analytical Chemistry, New York: Halsted Press, (1984).
  • [31] Riley M., Rosanske T.W., Development and validation of analytical methods, New York: Elsevier Science Ltd., (1996).
  • [32] Bard A.J., Faulkner L.R., Electrochemical Methods (2nd edition), New York: John Wiley & Sons, Inc., (2001), 166.
  • [33] Huang T.-Y., Kung C.-W., Wei H.-Y., Boopathi K.M., Chu C.-W., Ho K.-C., A High Performance Electrochemical Sensor for Acetaminophen Based on a rGO-PEDOT Nanotube Composite Modified Electrode, J. Mater. Chem. A, 2 (2014) 7229–7237.
  • [34] Luo S.X., Wu Y.H., Gou H., Liu Y., A Novel Electrochemical Sensor for the Analysis of Salbutamol in Pork Samples by Using NiFe2O4 Nanoparticles Modified Glassy Carbon Electrode, Advanced Materials Research, 850-851 (2014) 1279-1282.
  • [35] Wei Y., Zhang Q., Shao C., Li C., Zhang L., Li X., Voltammetric Determination of Salbutamol on a Glassy Carbon Electrode Coated with a Nanomaterial Thin Film, Journal of Analytical Chemistry, 65(4) (2010) 398–403

Determination of Salbutamol Sulfate in pharmaceutical formulation with differential pulse voltammetry using poly(Benzofuran-2-Boronic acid) modified platinum electrode

Year 2021, , 616 - 628, 24.09.2021
https://doi.org/10.17776/csj.926989

Abstract

In this study, determination of salbutamol sulfate (SBS) was carried out using poly(benzofuran-2-boronic acid)/platinum electrode (BF2BA/PtE). Polymerization of BF2BA was conducted in acetonitrile (AcN) containing 0.1 M sodium perchlorate (NaClO4) on bare PtE by cyclic voltammetry (CV) method. The electrochemical properties of the prepared polymer electrode were investigated by CV and electrochemical impedance spectroscopy (EIS) techniques in ferricyanide/KNO3 solution. Then, prepared poly(BF2BA/PtE) was used for detection of the SBS. Monomer type, concentration, the number of cycles and scan rate were worked using differential pulse voltammetry (DPV) in citrate-phosphate buffer containing 1.15 mM SBS. The effects of parameters such as electrolyte type, pH effect on SBS DPV responses were studied. The SBS responses of the modified electrodes were also investigated by square wave voltammetry (SWV). The oxidative current peak stem from SBS concentration showed at 0.65V potential and a linear calibration curve was obtained in the range from 50 to 2000 μM SBS concentration. Limit of dedection (LOD), and limit of quantitation (LOQ), was calculated as 49.14 µM and 163.80 µM, respectively. The recovery efficiency for synthetic urine samples was obtained from 91.47 to 110.43% by using BF2BA/PtE.

References

  • [1] Barisione G., Baroffio M., Crimi E., Brusasco V., Beta-Adrenergic Agonists, Pharmaceuticals, 3 (2010) 1016–1044.
  • [2] Shihab A. I., Al-Sabha N. T., Application of Cloud Point Method for Spectrophotometric Determination of Salbutamol Sulphate and Methyldopa, Pak. J. Anal. Environ. Chem., 21 (1) (2020) 10-18.
  • [3] Balanag V.M., Yunus F., Yang P.C., Jorup C., Efficacy and safety of budesonide formoterol compared with salbutamol in the treatment of acute asthma, Pulm. Pharmacol. Ther., 19 (2) (2006) 139–147.
  • [4] El-Enany N., Belal F., Rizk M., A simple kinetic spectrophotometric method for the determination of salbutamol in dosage forms, Chem. Anal. (Warsaw, Poland) 49 (4) (2004) 587-599.
  • [5] Habib I.H.I., Hassouna M.E.M., Zaki G.A., Simultaneous Spectrophotometric Determination of Salbutamol and Bromhexine in Tablets, Il Farmaco, 60 (3) (2005) 249-254.
  • [6] Kalyani L., Chava V.N. Rao, Simultaneous spectrophotometric estimation of Salbutamol, Theophylline and Ambroxol three component tablet formulation using simultaneous equation methods, Karbala International Journal of Modern Science, 4(1) (2018) 171-179.
  • [7] Ayad M. M., Abdellatef H. E., Hosny M. M., Abdel-Sattar Kabil N., Spectrophotometric Determination of Etilefrine HCl, Salbutamol Sulphate and Tiemonium Methyl Sulphate Using Surface Plasmon Resonance Band of Gold Nanoparticles, Nano Biomed. Eng., 10(1) (2018) 16-24.
  • [8] R'afat M. N., Mahmoud M. I., Mozer H. AL-K., Akila A. S., Alaa A. S., Raluca van S. I. S., Hassan Y. A.-E., Development and validation of kinetic and atomic absorption spectrophotometric methods for the determination of salbutamol sulfate, RSC Advances, 5(70) (2015) 57164–57170.
  • [9] Gabiola C., Garcia-Calonge M.A., Portillo M.P., Martinez J.A., del Barrio A.S., Validation of a method for the determination of salbutamol in animal urine by gas chromatography‐mass spectrometry and its application to treated lamb samples, J. Microcol., 8(5) (1996) 361-364.
  • [10] Liu H., Gan N., Chen Y., Ding Q., Huang J., Lin S., Cao Y., Li T., Novel method for the rapid and specific extraction of multiple β-agonist residues in food by tailor-made monolith-MIPs extraction disks and detection by gas chromatography with mass spectrometry, J Sep Sci., 39(18) (2016) 3578–3585
  • [11] Sutariya V.B., Mashru R.C., Sankalia M.G., Sankalia J.M., Liquid chromatographic determination and pharmacokinetics study of salbutamol sulphate in rabbit plasma, ArsPharm., 47(2) (2006) 185-197.
  • [12] Kulikovskii AV, Lisitsyn AB, Gorlov IF, Slozhenkina MI, Savchuk SA. Determination of growth hormones (β-agonists) in muscle tissue by HPLC with mass spectrometric detection, J Anal Chem., 71(10) (2016) 1052–1056.
  • [13] Chang K.-C., Chang Y.-T., Tsai C.-E., Determination of ractopamine and salbutamol in pig hair by liquid chromatography tandem mass spectrometry, Journal of Food and Drug Analysis, 26(2) (2018) 725-730.
  • [14] Zhang L.Y., Chang B.Y., Dong T., He P.L., Yang W.J., Wang Z.Y., Simultaneous Determination of Salbutamol, Ractopamine, and Clenbuterol in Animal Feeds by SPE and LC–MS, Journal of Chromatographic Science, 47(4) (2009) 324-328.
  • [15] Chan S.H., Lee W., Asmawi M.Z., Tan S.C., Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples, J. Chromatogr. B., 1025 (2016) 83–91.
  • [16] Changguo C., Hong L., Yujing F., Determination of salbutamol sulfate in medicaments by capillary electrophoresis with contactless conductivity detection, Chin. J. Chromatogr., 29(2) (2011) 137–140.
  • [17] Sirichai S., Khanatharana P., Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis, Talanta, 76(5) (2008) 1194–1198.
  • [18] Nguyen T.A.H., Pham T.N.M., Doan T.T., Ta T.T., Saiz J., Nguyen T.Q.H., Hauser P.C., Mai T.D., Simple semi-automated portable capillary electrophoresis instrument with contactless conductivity detection for the determination of beta-agonists in pharmaceutical and pig-feed samples, J. Chromatogr. A., 1360 (2014) 305–311.
  • [19] Lodén H., Pettersson C., Arvidsson T., Amini A., Quantitative determination of salbutamol in tablets by multiple-injection capillary zone electrophoresis, J. Chromatogr. A., 1207 (1-2) (2008) 181–185.
  • [20] Chen Q., Fan L.-Y., Zhang W., Cao C.-X., Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment, Talanta, 76(2) (2008) 282–287.
  • [21] Lindino C.A., Bulhões L.O.S., Determination of fenoterol and salbutamol in pharmaceutical formulations by electrogenerated Chemiluminescence, Talanta, 72(5) (2007) 1746-1751.
  • [22] Barnett N. W., Hindson B. J., Lewis S. W., Determination of Ranitidine and Salbutamol by Flow Injection Analysis with Chemiluminescence Detection, Analytica Chimica, 384(2) (1999) 151-158.
  • [23] Demir E., İnam O., İnam R., Determination of ophthalmic drug proparacaine using multi-walled carbon nanotube paste electrode by square wave stripping voltammetry, Analytical Sciences, 34 (2018) 771-776.
  • [24] İnam O., Demir E., Uslu B., Voltammetric Pathways for the Analysis of Ophthalmic Drugs, Current Pharmaceutical Analysis, 16 (2020) 367-391.
  • [25] Güngör Ö., Kılıç B., Karasürmeli T.S., Özcan İ., Köytepe S., Voltammetric determination of alpha lipoic acid using chitosan-based polyurethane membrane electrode, Measurement, 182 (2021) 109752.
  • [26] Amare M., Menkir G., Differential pulse voltammetric determination of salbutamol sulfate in syrup pharmaceutical formulation using poly(4-amino-3- hydroxynaphthalene sulfonic acid) modified glassy carbon electrode, Heliyon, 3(10) (2017) e00417.
  • [27] Goyal R.N., Oyama M., Singh S.P., Fast determination of salbutamol, abused by athletes for doping, in pharmaceuticals and human biological fluids by square wave voltammetry, J. Electroanal. Chem., 611(1-2) (2007) 140–148.
  • [28] Goyal R.N., Kaur D., Singh S.P., Pandey A.K., Effect of graphite and metallic impurities of C60 fullerene on determination of salbutamol in biological fluids, Talanta, 75(1) (2008) 63–69.
  • [29] Li J., Xu Z., Liu M., Deng P., Tang S., Jiang J., Feng H., Qian D., He L., Ag/N-doped reduced graphene oxide incorporated with molecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination, Biosensors and Bioelectronics, 90 (2017) 210-216.
  • [30] Miller J.C., Miller J.N., Statistics for Analytical Chemistry, New York: Halsted Press, (1984).
  • [31] Riley M., Rosanske T.W., Development and validation of analytical methods, New York: Elsevier Science Ltd., (1996).
  • [32] Bard A.J., Faulkner L.R., Electrochemical Methods (2nd edition), New York: John Wiley & Sons, Inc., (2001), 166.
  • [33] Huang T.-Y., Kung C.-W., Wei H.-Y., Boopathi K.M., Chu C.-W., Ho K.-C., A High Performance Electrochemical Sensor for Acetaminophen Based on a rGO-PEDOT Nanotube Composite Modified Electrode, J. Mater. Chem. A, 2 (2014) 7229–7237.
  • [34] Luo S.X., Wu Y.H., Gou H., Liu Y., A Novel Electrochemical Sensor for the Analysis of Salbutamol in Pork Samples by Using NiFe2O4 Nanoparticles Modified Glassy Carbon Electrode, Advanced Materials Research, 850-851 (2014) 1279-1282.
  • [35] Wei Y., Zhang Q., Shao C., Li C., Zhang L., Li X., Voltammetric Determination of Salbutamol on a Glassy Carbon Electrode Coated with a Nanomaterial Thin Film, Journal of Analytical Chemistry, 65(4) (2010) 398–403
There are 35 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Öznur Güngör 0000-0002-0664-1218

Publication Date September 24, 2021
Submission Date April 24, 2021
Acceptance Date July 27, 2021
Published in Issue Year 2021

Cite

APA Güngör, Ö. (2021). Determination of Salbutamol Sulfate in pharmaceutical formulation with differential pulse voltammetry using poly(Benzofuran-2-Boronic acid) modified platinum electrode. Cumhuriyet Science Journal, 42(3), 616-628. https://doi.org/10.17776/csj.926989