Year 2021,
, 565 - 575, 24.09.2021
Nuraniye Eruygur
,
Ümit Muhammet Koçyiğit
,
Mehmet Ataş
,
Özge Çevik
,
Faik Gökalp
,
Parham Taslimi
,
İlhami Gülçin
References
- [1] Chaieb K., Zmantar T., Ksouri R., Hajlaoui H., Mahdouani K., Abdelly C., Bakhrouf A., Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species, Mycoses, 50(5) (2007) 403-406.
- [2] Kokkini S.V.D., Carvacrol-rich plants in Greece, J. Flavour Fragr.,4 (1989) 1–7.
- [3] Juven B. J., Kanner J., Schved F., Weisslowicz H., Factors that interact with the antibacterial action of thyme essential oil and its active constituents, J. Appl. Bacteriol , 76 (1994) 626–631.
- [4] Kızıl S., Toncer O., Dıraz E., Variation of agronomical characteristics and essential oil components of zahter (Thymbra spicata L. var. spicata) populations in semi-arid climatic conditions, Turkish J. F. Crop., 20 (2015) 242–251.
- [5] Kızıl S., Determination of essential oil variations of Thymbra spicata var. spicata L. naturally growing in the wild flora of East Mediterranean and Southeastern Anatolia regions of Turkey, Ind. Crops Prod., 32 (2010) 593–600.
- [6] İnan M, Kırpık M, Kaya DA, K.S., Effect of harvest time on essential oil composition of Thymbra spicata L. growing in flora of Adıyaman, Advenced Environ. Biol, 5 (2011) 356–358.
- [7] Bayrak C, Taslimi P, Gulcin İ, M.A., The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes, Bioorg Chem.,72 (2017) 359–366.
- [8] Caglayan C., Demir Y., Kucukler S., Taslimi P., Kandemir F.M., Gulçin İ., The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach, J. Food Biochem., 43(2) (2019b ) e12720.
- [9] Kocyigit U.M., Taşkıran A.Ş., Taslimi P., Yokuş A., Temel Y., Gulcin İ., Inhibitory effects of oxytocin and oxytocin receptor antagonist atosiban on the activities of carbonic anhydrase and acetylcholinesterase enzymes in the liver and kidney tissues of rats, J. Biochem. Mol. Toxicol, (2017b) e21972.
- [10] Gul H.I. A., Demirtas G., Ucar P.T., Gulcin İ., Synthesis of Mannich bases by two different methods and evaluation of their acetylcholine esterase and carbonic anhydrase inhibitory activities, Lett. Drug Des. Discov.,14(10) (2016) 573–580.
- [11] Taslimi P., Aslan H.E., Demir Y., Oztaskin N., Maraş A., Gulçin İ., Beydemir S., Goksu S., Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia, Int. J. Biol. Macromol.,119 (2018) 857-863.
- [12] Demir Y., Taslimi P., Ozaslan M.S., Oztaskin N., Çetinkaya Y., Gulçin İ., Beydemir Ş., Goksu S., Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes, Arch. Pharm. (Weinheim), 351(12) (2018) e1800263.
- [13] Demir Y., Özaslan M.S., Duran H.E.., Küfrevioğlu Ö.İ., Beydemir Ş., Inhibition effects of quinones on aldose reductase: Antidiabetic properties, Environ. Toxicol Pharmacol, 70 (2019) 103195.
- [14] Demir Y., Durmaz L., Taslimi P., Gulçin İ., Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase, Biotechnol. Appl. Biochem., 66(5) (2019) 781-786.
- [15] Demir Y.., Duran H.E., Durmaz L., Taslimi P., Beydemir Ş., Gulçin İ., The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders, Appl. Biochem. Biotechnol.,190(2) (2020) 437-447.
- [16] Kang W., Song Y., Gu X., α-glucosidase inhibitory in vitro and antidiabetic activity in vivo of Osmanthus fragrans, J. Med. Plants Res., 6 (2012) 2850–2856.
- [17] Sannigrahi S., Mazuder U.K., Pal D.K., Parida S., Jain S., Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour, Iran. J. Pharm. Res.,9 (2010) 75–82.
- [18] Re R., Pellegrini N., Proteggente A., Pannalaa A., MinYang, Rice-Evans C., Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med.,26 (1999) 1231–1237.
- [19] Topal F., Topal M., Gocer H., Kalın P., Kocyigit U.M., Gulcin İ., Alwasel S.H., Antioxidant activity of taxifolin: An activity-structure relationship, Journal of Enzyme Inhibition and Medicinal Chemistry, 31(4) (2016) 674-683.
- [20] Tao Y., Zhang Y., Cheng Y., Wang Y., Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR, Biomed. Chromatogr., 27 (2013) 148–155.
- [21] Trojan-Rodrigues M., Alves T.L.S., Soares G.L.G., Ritter M.R., Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern, Brazil, J. Ethnopharmacol, 139 (2012) 155–163.
- [22] Athar M., Back J.H., Tang X., Kim K.H., Kopelovich L., Bickers D.R., Kim A.L., . Resveratrol: A review of preclinical studies for human cancer prevention, Toxicol. Appl. Pharmacol., 224 (2007) 274–283.
- [23] Noh J.S., Park C.H., Yokozawa T., Treatment with oligonol, a low-molecular polyphenol derived from lychee fruit, attenuates diabetes-induced hepatic damage through regulation of oxidative stress and lipid metabolism, Br. J. Nutr., 106 (2011) 1013–1022.
- [24] Varmaghan Z., Monajjemi M., Mollaamin F. Ab Initio Study of Vinblastine- Tubulin Anticancer Complex, Biomacromolecular Journal, 1(1) (2015) 46- 51.
- [25] Gökalp F., The chemical activity of Juglone in different phases as a protective agent, Journal of Fluorine Chemistry, 42 (2021)109701.
- [26] Gökalp F., An investigation of the olive phenols activity as a natural medicine, Journal of Food and Drug Analysis, 26(2) (2018) 657-661.
- [27] Ritchie D.W., Recent progress and future directions in protein-protein docking, Curr. Protein Pept. Sci., 9(1) (2008) 1-15.
- [28] Ahmad H., Ahmad S., Shah S.A.A., Latif A., Ali M., Khan F.A., Tahir M.N., Shaheen F., Wadood A., Ahmad M., Antioxidant and anticholinesterase potential of diterpenoid alkaloids from Aconitum heterophyllum, Bioorg. Med. Chem., 25(13) (2017) 3368-3376.
- [29] Gülçin İ., Antioxidant activity of eugenol: a structure-activity relationship study, J. Med. Food, 14(9) (2011)975-85.
- [30] Yu L., Haley S., Perret J., Harris M., Wilson J., Qian M., Free radical scavenging properties of wheat extracts, J. Agric. Food Chem., 50 (2002)1619–1624.
- [31] Gulcin İ., Antioxidant activity of food constituents-An overview, Archives of Toxicology, 86(3) (2012) 345-391.
- [32] Herring A., Ambrée O., Tomm M., Habermann H., Sachser N., Paulus W., Keyvani K., Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology, Exp. Neurol., 216 (2009) 184–192.
- [33] Francis P.T., Palmer A.M., Snape M., Wilcock G.K., The cholinergic hypothesis of Alzheimer’ s disease: a review of progress, J. Neurol. Neurosurg Psychiatry, 66 (1999) 137–147.
- [34] Kocyigit U.M., Budak Y., Gurdere M.B., Erturk F., Yencilek B., Taslimi P., Gulcin İ., Ceylan M., Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol, Biochem., (2017) 3455.
- [35] Kocyigit U.M., Taslimi P., Gezegen H., Gulcin I., Ceylan M., Evaluation of acetylcholinesterase and carbonic anhydrase inhibition profiles of 1, 2, 3, 4, 6-pentasubstituted-4-hydroxy-cyclohexanes, J. Biochem. Mol. Toxicol, 31(9) (2017) 21938
- [36] Sy G.Y., Cissé A., Nongonierma R.B., Sarr M., Mbodj N.A., Faye B., Hypoglycaemic and antidiabetic activity of acetonic extract of Vernonia colorata leaves in normoglycaemic and alloxan-induced diabetic rats, J. Ethnopharmacol., 98 (2005) 171–175.
- [37] Jung M., Park M., Lee H.C., Kang Y.H., Kang E.S., Antidiabetic agents from medicinal plants, Curr. Med. Chem., 13 (2006) 1203–1218.
- [38] Malviya N., Jain S., Malviya S., Antidiabetic potential of medicinal plants, Acta Pol. Pharm. - Drug Res., 67 (2010) 113–118.
- [39] Grover J.K., Yadav S., Vats V., Medicinal plants of India with anti-diabetic potential, J. Ethnopharmacol., 81 (2002) 81–100.
- [40] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, (2009).
Composition characterization and biological activity study of Thymbra spicata l. var. spicata essential oil
Year 2021,
, 565 - 575, 24.09.2021
Nuraniye Eruygur
,
Ümit Muhammet Koçyiğit
,
Mehmet Ataş
,
Özge Çevik
,
Faik Gökalp
,
Parham Taslimi
,
İlhami Gülçin
Abstract
The current research aimed to determine and report in vitro antioxidant, antimicrobial, antibiofilm, cytotoxic, anti-cholinesterase, and anti-diabetic properties and the stability of the major component of basic oil of Thymbra spicata var. spicata through different phases as theoretically. Essential oil exhibits potential biological activities because of the multiple components it contains.In the current research, the evaluation of Thymbra spicata essential oil antioxidant properties was conducted utilizing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) radical scavenging activity.Antimicrobial activity was assessed from minimum inhibition concentration (MIC) using the technique of microdilution and cytotoxicity activity was evaluated by MTT assay through MCF-7 and PC3 human cancer cell lines.Consequently, Cytotoxic activity was evaluated by means of MTT assay utilized. The essential oil was detected to have 340 µg/mL inhibiting influence on the growth of PC3 prostate cancer cells with IC50 value. Also, the T. spicata plant was observed to significantly repress the enzymes, namely acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glycosidase. IC50 values of enzymes were obtained 0.23 µg/mL for AChE, 1.64 µg/mL for BChE, 7.78 µg/mL for α-glycosidase. It was concluded that this plant may be used for Alzheimer's and diabetes disease.
References
- [1] Chaieb K., Zmantar T., Ksouri R., Hajlaoui H., Mahdouani K., Abdelly C., Bakhrouf A., Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species, Mycoses, 50(5) (2007) 403-406.
- [2] Kokkini S.V.D., Carvacrol-rich plants in Greece, J. Flavour Fragr.,4 (1989) 1–7.
- [3] Juven B. J., Kanner J., Schved F., Weisslowicz H., Factors that interact with the antibacterial action of thyme essential oil and its active constituents, J. Appl. Bacteriol , 76 (1994) 626–631.
- [4] Kızıl S., Toncer O., Dıraz E., Variation of agronomical characteristics and essential oil components of zahter (Thymbra spicata L. var. spicata) populations in semi-arid climatic conditions, Turkish J. F. Crop., 20 (2015) 242–251.
- [5] Kızıl S., Determination of essential oil variations of Thymbra spicata var. spicata L. naturally growing in the wild flora of East Mediterranean and Southeastern Anatolia regions of Turkey, Ind. Crops Prod., 32 (2010) 593–600.
- [6] İnan M, Kırpık M, Kaya DA, K.S., Effect of harvest time on essential oil composition of Thymbra spicata L. growing in flora of Adıyaman, Advenced Environ. Biol, 5 (2011) 356–358.
- [7] Bayrak C, Taslimi P, Gulcin İ, M.A., The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes, Bioorg Chem.,72 (2017) 359–366.
- [8] Caglayan C., Demir Y., Kucukler S., Taslimi P., Kandemir F.M., Gulçin İ., The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach, J. Food Biochem., 43(2) (2019b ) e12720.
- [9] Kocyigit U.M., Taşkıran A.Ş., Taslimi P., Yokuş A., Temel Y., Gulcin İ., Inhibitory effects of oxytocin and oxytocin receptor antagonist atosiban on the activities of carbonic anhydrase and acetylcholinesterase enzymes in the liver and kidney tissues of rats, J. Biochem. Mol. Toxicol, (2017b) e21972.
- [10] Gul H.I. A., Demirtas G., Ucar P.T., Gulcin İ., Synthesis of Mannich bases by two different methods and evaluation of their acetylcholine esterase and carbonic anhydrase inhibitory activities, Lett. Drug Des. Discov.,14(10) (2016) 573–580.
- [11] Taslimi P., Aslan H.E., Demir Y., Oztaskin N., Maraş A., Gulçin İ., Beydemir S., Goksu S., Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia, Int. J. Biol. Macromol.,119 (2018) 857-863.
- [12] Demir Y., Taslimi P., Ozaslan M.S., Oztaskin N., Çetinkaya Y., Gulçin İ., Beydemir Ş., Goksu S., Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes, Arch. Pharm. (Weinheim), 351(12) (2018) e1800263.
- [13] Demir Y., Özaslan M.S., Duran H.E.., Küfrevioğlu Ö.İ., Beydemir Ş., Inhibition effects of quinones on aldose reductase: Antidiabetic properties, Environ. Toxicol Pharmacol, 70 (2019) 103195.
- [14] Demir Y., Durmaz L., Taslimi P., Gulçin İ., Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase, Biotechnol. Appl. Biochem., 66(5) (2019) 781-786.
- [15] Demir Y.., Duran H.E., Durmaz L., Taslimi P., Beydemir Ş., Gulçin İ., The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders, Appl. Biochem. Biotechnol.,190(2) (2020) 437-447.
- [16] Kang W., Song Y., Gu X., α-glucosidase inhibitory in vitro and antidiabetic activity in vivo of Osmanthus fragrans, J. Med. Plants Res., 6 (2012) 2850–2856.
- [17] Sannigrahi S., Mazuder U.K., Pal D.K., Parida S., Jain S., Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour, Iran. J. Pharm. Res.,9 (2010) 75–82.
- [18] Re R., Pellegrini N., Proteggente A., Pannalaa A., MinYang, Rice-Evans C., Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med.,26 (1999) 1231–1237.
- [19] Topal F., Topal M., Gocer H., Kalın P., Kocyigit U.M., Gulcin İ., Alwasel S.H., Antioxidant activity of taxifolin: An activity-structure relationship, Journal of Enzyme Inhibition and Medicinal Chemistry, 31(4) (2016) 674-683.
- [20] Tao Y., Zhang Y., Cheng Y., Wang Y., Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR, Biomed. Chromatogr., 27 (2013) 148–155.
- [21] Trojan-Rodrigues M., Alves T.L.S., Soares G.L.G., Ritter M.R., Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern, Brazil, J. Ethnopharmacol, 139 (2012) 155–163.
- [22] Athar M., Back J.H., Tang X., Kim K.H., Kopelovich L., Bickers D.R., Kim A.L., . Resveratrol: A review of preclinical studies for human cancer prevention, Toxicol. Appl. Pharmacol., 224 (2007) 274–283.
- [23] Noh J.S., Park C.H., Yokozawa T., Treatment with oligonol, a low-molecular polyphenol derived from lychee fruit, attenuates diabetes-induced hepatic damage through regulation of oxidative stress and lipid metabolism, Br. J. Nutr., 106 (2011) 1013–1022.
- [24] Varmaghan Z., Monajjemi M., Mollaamin F. Ab Initio Study of Vinblastine- Tubulin Anticancer Complex, Biomacromolecular Journal, 1(1) (2015) 46- 51.
- [25] Gökalp F., The chemical activity of Juglone in different phases as a protective agent, Journal of Fluorine Chemistry, 42 (2021)109701.
- [26] Gökalp F., An investigation of the olive phenols activity as a natural medicine, Journal of Food and Drug Analysis, 26(2) (2018) 657-661.
- [27] Ritchie D.W., Recent progress and future directions in protein-protein docking, Curr. Protein Pept. Sci., 9(1) (2008) 1-15.
- [28] Ahmad H., Ahmad S., Shah S.A.A., Latif A., Ali M., Khan F.A., Tahir M.N., Shaheen F., Wadood A., Ahmad M., Antioxidant and anticholinesterase potential of diterpenoid alkaloids from Aconitum heterophyllum, Bioorg. Med. Chem., 25(13) (2017) 3368-3376.
- [29] Gülçin İ., Antioxidant activity of eugenol: a structure-activity relationship study, J. Med. Food, 14(9) (2011)975-85.
- [30] Yu L., Haley S., Perret J., Harris M., Wilson J., Qian M., Free radical scavenging properties of wheat extracts, J. Agric. Food Chem., 50 (2002)1619–1624.
- [31] Gulcin İ., Antioxidant activity of food constituents-An overview, Archives of Toxicology, 86(3) (2012) 345-391.
- [32] Herring A., Ambrée O., Tomm M., Habermann H., Sachser N., Paulus W., Keyvani K., Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology, Exp. Neurol., 216 (2009) 184–192.
- [33] Francis P.T., Palmer A.M., Snape M., Wilcock G.K., The cholinergic hypothesis of Alzheimer’ s disease: a review of progress, J. Neurol. Neurosurg Psychiatry, 66 (1999) 137–147.
- [34] Kocyigit U.M., Budak Y., Gurdere M.B., Erturk F., Yencilek B., Taslimi P., Gulcin İ., Ceylan M., Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol, Biochem., (2017) 3455.
- [35] Kocyigit U.M., Taslimi P., Gezegen H., Gulcin I., Ceylan M., Evaluation of acetylcholinesterase and carbonic anhydrase inhibition profiles of 1, 2, 3, 4, 6-pentasubstituted-4-hydroxy-cyclohexanes, J. Biochem. Mol. Toxicol, 31(9) (2017) 21938
- [36] Sy G.Y., Cissé A., Nongonierma R.B., Sarr M., Mbodj N.A., Faye B., Hypoglycaemic and antidiabetic activity of acetonic extract of Vernonia colorata leaves in normoglycaemic and alloxan-induced diabetic rats, J. Ethnopharmacol., 98 (2005) 171–175.
- [37] Jung M., Park M., Lee H.C., Kang Y.H., Kang E.S., Antidiabetic agents from medicinal plants, Curr. Med. Chem., 13 (2006) 1203–1218.
- [38] Malviya N., Jain S., Malviya S., Antidiabetic potential of medicinal plants, Acta Pol. Pharm. - Drug Res., 67 (2010) 113–118.
- [39] Grover J.K., Yadav S., Vats V., Medicinal plants of India with anti-diabetic potential, J. Ethnopharmacol., 81 (2002) 81–100.
- [40] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, (2009).