Research Article
BibTex RIS Cite

Genotoxic effect of two commonly used textile dyes Reactive Blue 19 and Reactive Black 5 using Allium cepa L. as an indicator

Year 2021, , 515 - 525, 24.09.2021
https://doi.org/10.17776/csj.863973

Abstract

In this study, the cytotoxic and genotoxic effects of Reactive Blue 19 and Reactive Black 5 were investigated using the Allium test and comet assay. These chemicals are fabric dyes used in textile industries in various parts of Turkey. Bulbs with roots of Allium cepa L. were treated with different concentrations (25, 50 and 100 ppm) of these textile dyes for 24 h. and 48 h. The root tips were processed for cytological studies by the aseto-orcein squash procedure. Distilled water and methyl methane sulfonate (MMS, 10 ppm) were used as an negative and positive control, respectively. Exposure of Reactive Blue 19 and Reactive Black 5 significantly decreased mitotic index values. Additionally, all treatments changed the frequency of mitotic phases when compared with the control groups. These dyes increased chromosome aberrations in test material. Among these abnormalities were anaphase bridges, c-mitosis, laggards, micronuclei and stickiness. A significant increase in DNA damage was also observed at all concentrations of both Reactive Blue 19 and Reactive Black 5 examined by comet assay.

Thanks

Author is thankful to Dr. Gülben Albayrak for fluorescence microscope.

References

  • [1] Ekinci İ., Bir tekstil boyası olan poly r-478’in streptomisetler ile renk giderimi, Yüksek Lisans Tezi, Mersin Üniv., Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Mersin, (2007).
  • [2] Al-Sabti K., Chlorotriazine reactive azo red 120 textile dye induces micronuclei in fish, Ecotoxicol. Environ. Saf., 47 (2000) 149-155.
  • [3] Odeigah P.G.C., Osanyipeju A.O., Genotoxic effects of two industrial effluents and methyl methane sulfonate in Clarias Lazera, Food Chem. Toxicol., 33 (1995) 501- 505.
  • [4] Sumathi M., Kalaiselvi K., Palanivel M., Rajaguru P., Genotoxicity of textile dye effluent on fish (Cyprinus carpio) measured using the comet assay, Bull. Environ. Contam. Toxicol., 66 (2001) 407- 414.
  • [5] Çavaş T., Ergene- Gözükara S., Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (agnors) as cyto-genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent, Mutation Research., 538 (2003) 81-91.
  • [6] Moawad H., Abd El-Rahim W.M., Khalafallah M.A., Evaluation of biotoxicity of textile dyes using two bioassay tests. J. Basic Microbiol., 43 (3) ( 2003) 218- 229.
  • [7] Fiskesjo G., The Allium test-an alternative in environmental studies: the relative toxicity of metal ions, Mutat Res., 197 (1988) 243–260.
  • [8] Liu T., Zhu L., Wang J., Wang J., Xie, H., The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings, Journal of Hazardous Materials, 285 (2015) 27–36.
  • [9] Cui J., Zhang R., Wu G.L., Zhu H.M., Yang H., Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.), Arch. Environ. Contam. Toxicol., 59 (2010) 100–108.
  • [10] Liman R., Ciğerci İ.H., Ozturk N.S., Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay, Pesticide Biochemistry and Physiology, 118 (2015) 38-42.
  • [11] Singh M., Das A., Singh D., Maiti P., Shabbir M., Das A., High genotoxicity of shipyard contaminants on Allium cepa and calf thymus DNA, Environmental Chemistry Letters, 12(2) (2014) 321-327.
  • [12] Kwon J.Y., Lee S., Y. Koedrith P., Lee J. Y., Kim K. M., Oh J. M., Yang S. I., Kim M. K., Lee J. K., Jeong J., Maeng E. H., Lee B. J., Seo Y. R., Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests, Mutation research/Genetic Toxicology and Environmental Mutagenesis, 761 (2014) 1-9.
  • [13] Türkoğlu Ş., Genotoxicity of five food preservatives tested on root tips of Allium cepa L., Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 626 (1-2) (2007) 4-14.
  • [14] Ma M., Tong Z., Wang Z., Zhu W., Acute Toxicity Bioassay Using the Freshwater Luminescent Bacterium Vibrio-qinghaiensis sp. Nov.—Q67, Bull. Environ. Contam. Toxicol., 62 (1999) 247-253.
  • [15] Fernandes T.C.C., Mazzeo D.E.C., Marin-Morales M.A., Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide, Pestic. Biochem. Physiol., 88 (2007) 252–259.
  • [16] Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas Y.F., Ryu E., Sasaki J.C., Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen., 35 (2000) 206–221
  • [17] Ciğerci İ.H., Liman R., Özgül E. and Konuk M., Genotoxicity of indium tin oxide by Allium and Comet tests, Cytotechnology, 67(1) (2013) 157–163.
  • [18] Ma T. H., Xu Z. D., Xu C., The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants, Mutat Res., 334 (1995) 185–195.
  • [19] Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Sasaki Y.F., Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen., 35 (3) (2000) 206-221.
  • [20] Collins A. R., The comet assay for DNA damage and repair: principles applications and limitations, Mol. Biotechnol., 26 (2004) 249–261.
  • [21] Watanabe Y., Kubota Y., Fuma S., Kouichi M., Ichikawa S., Kubota M., Yoshida S., Cytokinesis block micronucleus assay in field plants for monitoring radiation-induced genotoxicity of the environment, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 774 (2014) 41-46.
  • [22] Seregin I.V., Kozhevnikova A.D., Physiological role of nickel and its toxic effects on higher plants, Russ. J. Plant Physiol., 53 (2006) 257–277.
  • [23] Akinboro A., Bakare A.A., Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn., Journal of Ethnopharmacology, 112 (2007) 470-475.
  • [24] Fusconi A., Repetto O., Bona E., Massa N., Gallo C., Dumas-Gaudot E., Berta G., Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings, Environmental and Experimental Botany., 58 (2006) 253–260.
  • [25] Seth C. S., Kumar C. P, Misra V., The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L., Ecotoxicol Environ. Saf., 71(1) (2008) 76-85.
  • [26] Fiskesjo G., The Allium test as a standart in environmental monitoring, Hereditas, 102 (1985) 99– 112.
  • [27] Sudhakar R., Gowda N., Venu G., Mitotic abnormalities induced by silk Dyeing Industry Effluents in the cells of Allium cepa, Cytologia, 66 (2001) 235–239.
  • [28] El-Ghamery A.A., El-Nahas A.I., Mansour M.M., The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba, Cytologia, 65 (2000) 277–287.
  • [29] Olorunfemi D. I., Duru E., Okieimen F., Induction of chromosome aberrations in Allium cepa L. root tips on exposure to ballast water, Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics. 65(2) (2012) 147-151.
  • [30] Abu N.E., Duru N.U., Cytological effects of oxytocic agents on mitotic chromosomes of Allium cepa, Journal of Agriculture, Food, Environment and Extension., 5(2) (2006) 1-7.
  • [31] Fındıklı Z., Türkoğlu Ş., The effects of Glyphos and DDVP on mitotic division and chromosomes in Allium cepa L., Cumhuriyet Science Journal, 31(2) (2010) 49-62.
  • [32] Chukwujekwu J.C. Van Staden J., Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn., South African Journal of Botany. 92 (2014) 147–150.
  • [33] Namita K. and Sharma S., Allium cepa root chromosomal aberration assay: A Review, Indian J. Pharm. Biol. Res., 1 (3) (2013) 105-119.
  • [34] Khallef M., Liman R., Konuk M., Ciğerci İ.H., Benouareth D., Tabet M., Abda A., Genotoxicity of drinking water disinfection by-products (bromoform and chloroform) by using both Allium anaphase-telophase and comet tests, Cytotechnology, 67 (2) (2013) 207-213.
  • [35] Radić S., Stipaničev D., Vujčić V., Rajčić M. M., Širac S., Pevalek-Kozlina B., The evaluation of surface and wastewater genotoxicity using the Allium cepa test, Science of the Total Environment, 408 (2010) 1228–1233.
  • [36] Olorunfemi D.I., Olorunfemi O.P., Agbozu, I.E., Genotoxicity assessment of contaminated drinking water sources in a rural community in Edo State of Nigeria, Journal of Geoscience and Environment Protection. 2 (2014) 52-59.
  • [37] Ping K.Y., Darah I., Yusuf U.K., Yeng C., Sasidharan S., Genotoxicity of Euphorbia hirta: An Allium cepa assay, Molecules, 17(7) (2012) 7782-7791.
  • [38] Rodríguez Y.A., Christofoletti C., Pedro J., Bueno O.C., Malaspina O.R., Ferreira A.C., Fontanetti C.S., Allium cepa and Tradescantia pallida bioassays to evaluate effects of the insecticide imidacloprid, Chemosphere, 120 (2015) 438–442.
  • [39] Yadav S.A., Sehrawat G., Evaluation of genetic damage in farmers exposed to pesticide mixtures, Int. J. Hum. Genet., 11(2) (2011) 105-109.
  • [40] Tripathy S.K., Patel S., Abnormal mitosis in root meristem cells of Allium cepa L. induced by a fabric dye reactive turquoise blue (Procion MX), African Journal of Biotechnology, 13 (38) (2014) 3881-3891.
  • [41] Gottlieb A., Shaw C., Smith A., Wheatley A., Forsythe S., The toxicity of textile reactive azo dyes after hydrolysis and decolourisation, J. Biotechnol., 101(1) (2003) 49-56.
  • [42] Şenel U., Sur H.İ., Demirtaş M., Investigation of mutagenic effects of some synthetic reactive dyes in textile industry by using umu-test, Ekoloji, 21(85) (2012) 49-56.
  • [43] Salas-Veizaga D.M., Morales-Belpaire I., Terrazas-Siles E., Evaluation of the genotoxic potential of reactive black 5 solutions subjected to decolorizing treatments by three fungal strains, Ecotoxicol Environ Saf., 89 (2013) 125-129.
  • [44] Leme D.M., Oliveira G.A., Meireles G., Brito L.B., Rodrigues L. de B, Palma de Oliveira D., Eco- and genotoxicological assessments of two reactive textile dyes, J. Toxicol Environ Health A., 78(5) (2015) 287-300.
  • [45] Leme D.M., Primo F.L., Gobo G.G., da Costa C.R., Tedesco A.C., de Oliveira D.P., Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system), J. Toxicol Environ Health A., 78(7) (2015) 466-80.
Year 2021, , 515 - 525, 24.09.2021
https://doi.org/10.17776/csj.863973

Abstract

References

  • [1] Ekinci İ., Bir tekstil boyası olan poly r-478’in streptomisetler ile renk giderimi, Yüksek Lisans Tezi, Mersin Üniv., Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Mersin, (2007).
  • [2] Al-Sabti K., Chlorotriazine reactive azo red 120 textile dye induces micronuclei in fish, Ecotoxicol. Environ. Saf., 47 (2000) 149-155.
  • [3] Odeigah P.G.C., Osanyipeju A.O., Genotoxic effects of two industrial effluents and methyl methane sulfonate in Clarias Lazera, Food Chem. Toxicol., 33 (1995) 501- 505.
  • [4] Sumathi M., Kalaiselvi K., Palanivel M., Rajaguru P., Genotoxicity of textile dye effluent on fish (Cyprinus carpio) measured using the comet assay, Bull. Environ. Contam. Toxicol., 66 (2001) 407- 414.
  • [5] Çavaş T., Ergene- Gözükara S., Micronuclei, nuclear lesions and interphase silver-stained nucleolar organizer regions (agnors) as cyto-genotoxicity indicators in Oreochromis niloticus exposed to textile mill effluent, Mutation Research., 538 (2003) 81-91.
  • [6] Moawad H., Abd El-Rahim W.M., Khalafallah M.A., Evaluation of biotoxicity of textile dyes using two bioassay tests. J. Basic Microbiol., 43 (3) ( 2003) 218- 229.
  • [7] Fiskesjo G., The Allium test-an alternative in environmental studies: the relative toxicity of metal ions, Mutat Res., 197 (1988) 243–260.
  • [8] Liu T., Zhu L., Wang J., Wang J., Xie, H., The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings, Journal of Hazardous Materials, 285 (2015) 27–36.
  • [9] Cui J., Zhang R., Wu G.L., Zhu H.M., Yang H., Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.), Arch. Environ. Contam. Toxicol., 59 (2010) 100–108.
  • [10] Liman R., Ciğerci İ.H., Ozturk N.S., Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay, Pesticide Biochemistry and Physiology, 118 (2015) 38-42.
  • [11] Singh M., Das A., Singh D., Maiti P., Shabbir M., Das A., High genotoxicity of shipyard contaminants on Allium cepa and calf thymus DNA, Environmental Chemistry Letters, 12(2) (2014) 321-327.
  • [12] Kwon J.Y., Lee S., Y. Koedrith P., Lee J. Y., Kim K. M., Oh J. M., Yang S. I., Kim M. K., Lee J. K., Jeong J., Maeng E. H., Lee B. J., Seo Y. R., Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests, Mutation research/Genetic Toxicology and Environmental Mutagenesis, 761 (2014) 1-9.
  • [13] Türkoğlu Ş., Genotoxicity of five food preservatives tested on root tips of Allium cepa L., Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 626 (1-2) (2007) 4-14.
  • [14] Ma M., Tong Z., Wang Z., Zhu W., Acute Toxicity Bioassay Using the Freshwater Luminescent Bacterium Vibrio-qinghaiensis sp. Nov.—Q67, Bull. Environ. Contam. Toxicol., 62 (1999) 247-253.
  • [15] Fernandes T.C.C., Mazzeo D.E.C., Marin-Morales M.A., Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide, Pestic. Biochem. Physiol., 88 (2007) 252–259.
  • [16] Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas Y.F., Ryu E., Sasaki J.C., Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen., 35 (2000) 206–221
  • [17] Ciğerci İ.H., Liman R., Özgül E. and Konuk M., Genotoxicity of indium tin oxide by Allium and Comet tests, Cytotechnology, 67(1) (2013) 157–163.
  • [18] Ma T. H., Xu Z. D., Xu C., The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants, Mutat Res., 334 (1995) 185–195.
  • [19] Tice R.R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Sasaki Y.F., Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen., 35 (3) (2000) 206-221.
  • [20] Collins A. R., The comet assay for DNA damage and repair: principles applications and limitations, Mol. Biotechnol., 26 (2004) 249–261.
  • [21] Watanabe Y., Kubota Y., Fuma S., Kouichi M., Ichikawa S., Kubota M., Yoshida S., Cytokinesis block micronucleus assay in field plants for monitoring radiation-induced genotoxicity of the environment, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 774 (2014) 41-46.
  • [22] Seregin I.V., Kozhevnikova A.D., Physiological role of nickel and its toxic effects on higher plants, Russ. J. Plant Physiol., 53 (2006) 257–277.
  • [23] Akinboro A., Bakare A.A., Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn., Journal of Ethnopharmacology, 112 (2007) 470-475.
  • [24] Fusconi A., Repetto O., Bona E., Massa N., Gallo C., Dumas-Gaudot E., Berta G., Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings, Environmental and Experimental Botany., 58 (2006) 253–260.
  • [25] Seth C. S., Kumar C. P, Misra V., The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L., Ecotoxicol Environ. Saf., 71(1) (2008) 76-85.
  • [26] Fiskesjo G., The Allium test as a standart in environmental monitoring, Hereditas, 102 (1985) 99– 112.
  • [27] Sudhakar R., Gowda N., Venu G., Mitotic abnormalities induced by silk Dyeing Industry Effluents in the cells of Allium cepa, Cytologia, 66 (2001) 235–239.
  • [28] El-Ghamery A.A., El-Nahas A.I., Mansour M.M., The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba, Cytologia, 65 (2000) 277–287.
  • [29] Olorunfemi D. I., Duru E., Okieimen F., Induction of chromosome aberrations in Allium cepa L. root tips on exposure to ballast water, Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics. 65(2) (2012) 147-151.
  • [30] Abu N.E., Duru N.U., Cytological effects of oxytocic agents on mitotic chromosomes of Allium cepa, Journal of Agriculture, Food, Environment and Extension., 5(2) (2006) 1-7.
  • [31] Fındıklı Z., Türkoğlu Ş., The effects of Glyphos and DDVP on mitotic division and chromosomes in Allium cepa L., Cumhuriyet Science Journal, 31(2) (2010) 49-62.
  • [32] Chukwujekwu J.C. Van Staden J., Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn., South African Journal of Botany. 92 (2014) 147–150.
  • [33] Namita K. and Sharma S., Allium cepa root chromosomal aberration assay: A Review, Indian J. Pharm. Biol. Res., 1 (3) (2013) 105-119.
  • [34] Khallef M., Liman R., Konuk M., Ciğerci İ.H., Benouareth D., Tabet M., Abda A., Genotoxicity of drinking water disinfection by-products (bromoform and chloroform) by using both Allium anaphase-telophase and comet tests, Cytotechnology, 67 (2) (2013) 207-213.
  • [35] Radić S., Stipaničev D., Vujčić V., Rajčić M. M., Širac S., Pevalek-Kozlina B., The evaluation of surface and wastewater genotoxicity using the Allium cepa test, Science of the Total Environment, 408 (2010) 1228–1233.
  • [36] Olorunfemi D.I., Olorunfemi O.P., Agbozu, I.E., Genotoxicity assessment of contaminated drinking water sources in a rural community in Edo State of Nigeria, Journal of Geoscience and Environment Protection. 2 (2014) 52-59.
  • [37] Ping K.Y., Darah I., Yusuf U.K., Yeng C., Sasidharan S., Genotoxicity of Euphorbia hirta: An Allium cepa assay, Molecules, 17(7) (2012) 7782-7791.
  • [38] Rodríguez Y.A., Christofoletti C., Pedro J., Bueno O.C., Malaspina O.R., Ferreira A.C., Fontanetti C.S., Allium cepa and Tradescantia pallida bioassays to evaluate effects of the insecticide imidacloprid, Chemosphere, 120 (2015) 438–442.
  • [39] Yadav S.A., Sehrawat G., Evaluation of genetic damage in farmers exposed to pesticide mixtures, Int. J. Hum. Genet., 11(2) (2011) 105-109.
  • [40] Tripathy S.K., Patel S., Abnormal mitosis in root meristem cells of Allium cepa L. induced by a fabric dye reactive turquoise blue (Procion MX), African Journal of Biotechnology, 13 (38) (2014) 3881-3891.
  • [41] Gottlieb A., Shaw C., Smith A., Wheatley A., Forsythe S., The toxicity of textile reactive azo dyes after hydrolysis and decolourisation, J. Biotechnol., 101(1) (2003) 49-56.
  • [42] Şenel U., Sur H.İ., Demirtaş M., Investigation of mutagenic effects of some synthetic reactive dyes in textile industry by using umu-test, Ekoloji, 21(85) (2012) 49-56.
  • [43] Salas-Veizaga D.M., Morales-Belpaire I., Terrazas-Siles E., Evaluation of the genotoxic potential of reactive black 5 solutions subjected to decolorizing treatments by three fungal strains, Ecotoxicol Environ Saf., 89 (2013) 125-129.
  • [44] Leme D.M., Oliveira G.A., Meireles G., Brito L.B., Rodrigues L. de B, Palma de Oliveira D., Eco- and genotoxicological assessments of two reactive textile dyes, J. Toxicol Environ Health A., 78(5) (2015) 287-300.
  • [45] Leme D.M., Primo F.L., Gobo G.G., da Costa C.R., Tedesco A.C., de Oliveira D.P., Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system), J. Toxicol Environ Health A., 78(7) (2015) 466-80.
There are 45 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Şifa Türkoğlu 0000-0002-2725-9827

Publication Date September 24, 2021
Submission Date January 18, 2021
Acceptance Date August 26, 2021
Published in Issue Year 2021

Cite

APA Türkoğlu, Ş. (2021). Genotoxic effect of two commonly used textile dyes Reactive Blue 19 and Reactive Black 5 using Allium cepa L. as an indicator. Cumhuriyet Science Journal, 42(3), 515-525. https://doi.org/10.17776/csj.863973