Research Article
BibTex RIS Cite
Year 2021, , 586 - 592, 24.09.2021
https://doi.org/10.17776/csj.840132

Abstract

References

  • [1] Wang X.X., Swihart M.T., Wu G., Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation, Nat. Catal., 2(7) (2019) 578-589.
  • [2] Pivovar B., Catalysts for fuel cell transportation and hydrogen related uses, Nat. Catal., 2(7) (2019) 562-565.
  • [3] Colic M., Stamenkovic D., Anzel I., Lojen G., Rudolf R., The influence of the microstructure of high noble gold-platinum dental alloys on their corrosion and biocompatibility in vitro, Gold Bull., 42(1) (2009) 34-47.
  • [4] Ben Saber N., Mezni A., Alrooqi A., Altalhi T., A review of ternary nanostructures based noble metal/semiconductor for environmental and renewable energy applications, J. Mater. Res. Technol., 9(6) (2020) 15233-15262.
  • [5] Xia B.Y., Wu H.B., Yan Y., Lou X.W., Wang X., Ultrathin and Ultralong Single-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity, J. Am. Chem. Soc., 135(25) (2013) 9480-9485.
  • [6] Wang J., Barriers of scaling-up fuel cells: Cost, durability and reliability, Energy, 80 (2015) 509-521.
  • [7] Chen Y., Zhang G., Ma J., Zhou Y., Tang Y., Lu T., Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles, Int. J. Hydrogen Energy, 35(19) (2010) 10109-10117.
  • [8] Zaleska-Medynska A., Marchelek M., Diak M., Grabowska E., Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties, Adv. Colloid Interface Sci., 229 (2016) 80-107.
  • [9] Srinoi P., Chen Y.-T., Vittur V., Marquez M., Lee T., Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications, Appl. Sci., 8 (2018) 1106.
  • [10] Li C.-H., Li M.-C., Liu S.-P., Jamison A.C., Lee D., Lee T.R., Lee T.-C., Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold–Silver Nanoshells, ACS Appl. Mater. Interfaces, 8(14) (2016) 9152-9161.
  • [11] Hien Pham T.T., Cao C., Sim S.J., Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations, J. Magn. Magn. Mater., 320(15) (2008) 2049-2055.
  • [12] Li X., Liu H., Liu S., Zhang J., Chen W., Huang C., Mao L., Effect of Pt–Pd hybrid nano-particle on CdS's activity for water splitting under visible light, Int. J. Hydrogen Energy, 41(48) (2016) 23015-23021.
  • [13] Farahmandjou M., Effect of Oleic Acid and Oleylamine Surfactants on the Size of FePt Nanoparticles, J. Supercond. Novel Magn., 25(6) (2012) 2075-2079.
  • [14] Jia Y., Cao Z., Chen Q., Jiang Y., Xie Z., Zheng L., Synthesis of composition-tunable octahedral Pt–Cu alloy nanocrystals by controlling reduction kinetics of metal precursors, Sci. Bull., 60 (2015).
  • [15] Saravanan G., Khobragade R., Chand Nagar L., Labhsetwar N., Ordered intermetallic Pt–Cu nanoparticles for the catalytic CO oxidation reaction, RSC Adv., 6(88) (2016) 85634-85642.
  • [16] Vernieres J., Steinhauer S., Zhao J., Chapelle A., Menini P., Dufour N., Diaz R.E., Nordlund K., Djurabekova F., Grammatikopoulos P., Sowwan M., Gas Phase Synthesis of Multifunctional Fe-Based Nanocubes, Adv. Funct. Mater., 27(11) (2017) 1605328.
  • [17] Salavati-Niasari M., Davar F., Mazaheri M., Shaterian M., Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition, J. Magn. Magn. Mater., 320(3) (2008) 575-578.
  • [18] Gul I.H., Maqsood A., Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route, J. Alloys Compd., 465(1) (2008) 227-231.
  • [19] Shemer G., Tirosh E., Livneh T., Markovich G., Tuning a Colloidal Synthesis to Control Co2+ Doping in Ferrite Nanocrystals, J. Phys. Chem. C., 111(39) (2007) 14334-14338.
  • [20] Millot N., Le Gallet S., Aymes D., Bernard F., Grin Y., Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis, J. Eur. Ceram. Soc., 27(2) (2007) 921-926.
  • [21] Lisiecki I., Pileni M.P., Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals:  The Limited Influence of Reverse Micelles, Langmuir, 19(22) (2003) 9486-9489.
  • [22] Meng Q., Zhang Y., Dong P., Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries, J. Clean. Prod., 180 (2018) 64-70.
  • [23] Fiévet F., Ammar-Merah S., Brayner R., Chau F., Giraud M., Mammeri F., Peron J., Piquemal J.Y., Sicard L., Viau G., The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions, Chem. Soc. Rev., 47(14) (2018) 5187-5233.
  • [24] Yan W., Zhang D., Zhang Q., Sun Y., Zhang S., Du F., Jin X., Synthesis of PtCu–based nanocatalysts: Fundamentals and emerging challenges in energy conversion, J. Energy Chem., 64 (2022) 583-606.
  • [25] Fang D., Wan L., Jiang Q., Zhang H., Tang X., Qin X., Shao Z., Wei Z., Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction, Nano Res., 12(11) (2019) 2766-2773.
  • [26] Liao Y., Yu G., Zhang Y., Guo T., Chang F., Zhong C.-J., Composition-Tunable PtCu Alloy Nanowires and Electrocatalytic Synergy for Methanol Oxidation Reaction, J. Phys. Chem. C., 120(19) (2016) 10476-10484.
  • [27] Huang K.-C., Ehrman S.H., Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds, Langmuir, 23(3) (2007) 1419-1426.
  • [28] Li N., Tang S., Meng X., Reduced Graphene Oxide Supported Bimetallic Cobalt–Palladium Nanoparticles with High Catalytic Activity towards Formic Acid Electro-oxidation, J Mater Sci Technol., 31(1) (2015) 30-36.
  • [29] Arán-Ais R.M., Vidal-Iglesias F.J., Solla-Gullón J., Herrero E., Feliu J.M., Electrochemical Characterization of Clean Shape-Controlled Pt Nanoparticles Prepared in Presence of Oleylamine/Oleic Acid, Electroanalysis, 27(4) (2015) 945-956.
  • [30] Tong Y.Y., Polyvinylpyrrolidone (pvp) for enhancing the activity and stability of platinum-based electrocatalysts, Google Patents, 2015.
  • [31] Cao Y., Yang Y., Shan Y., Huang Z., One-Pot and Facile Fabrication of Hierarchical Branched Pt–Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells, ACS Appl. Mater. Interfaces, 8(9) (2016) 5998-6003.
  • [32] Wu F., Niu W., Lai J., Zhang W., Luque R., Xu G., Highly Excavated Octahedral Nanostructures Integrated from Ultrathin Mesoporous PtCu3 Nanosheets: Construction of Three-Dimensional Open Surfaces for Enhanced Electrocatalysis, Small, 15(10) (2019) 1804407.
  • [33] Papa F., Negrila C., Miyazaki A., Balint I., Morphology and chemical state of PVP-protected Pt, Pt–Cu, and Pt–Ag nanoparticles prepared by alkaline polyol method, J. Nanopart. Res., 13(10) (2011) 5057.
  • [34] Du X., Luo S., Du H., Tang M., Huang X., Shen P.K., Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction, J. Mater. Chem. A., 4(5) (2016) 1579-1585.
  • [35] Bishnoi A., Kumar S., Joshi N., Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites, in: S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Eds.), Amsterdam: Elsevier, (2017) 313-337.

Structural analysis of pure PtCu3 nanoparticles synthesized by modified Polyol process

Year 2021, , 586 - 592, 24.09.2021
https://doi.org/10.17776/csj.840132

Abstract

The development of effective multi-functional Pt-based nanoparticles (NPs) with enhanced activity, stability, and reduced cost for advanced applications still remains a challenge. In this study, Pt(acac)2 and Cu(OAc)2 metal precursors were reduced to form Pt-Cu NPs at 140 °C in ethylene glycol and sodium borohydride that is a secondary reducing agent in the modified polyol method. The x-ray diffraction (XRD) and Rietveld refinement analyses confirmed the face-centered cubic PtCu3 structure with the space groups of Fm3 ̅m and a lattice constant of a=b=c=3.6829 Å. The average crystal size was found to be 2.76 nm by Scherrer's formula. Scanning electron microscopy (SEM) images confirm the formation of monodisperse PtCu3 NPs with an average size of 8.04 nm within a narrow range of 5-13 nm. While energy-dispersive x-ray spectroscopy (EDS) analysis confirmed that the composition is formed of 26% Pt and 74% Cu atoms and XRD and EDS analyses were confirmed impurity, by-products, and oxidation free NPs formation.

References

  • [1] Wang X.X., Swihart M.T., Wu G., Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation, Nat. Catal., 2(7) (2019) 578-589.
  • [2] Pivovar B., Catalysts for fuel cell transportation and hydrogen related uses, Nat. Catal., 2(7) (2019) 562-565.
  • [3] Colic M., Stamenkovic D., Anzel I., Lojen G., Rudolf R., The influence of the microstructure of high noble gold-platinum dental alloys on their corrosion and biocompatibility in vitro, Gold Bull., 42(1) (2009) 34-47.
  • [4] Ben Saber N., Mezni A., Alrooqi A., Altalhi T., A review of ternary nanostructures based noble metal/semiconductor for environmental and renewable energy applications, J. Mater. Res. Technol., 9(6) (2020) 15233-15262.
  • [5] Xia B.Y., Wu H.B., Yan Y., Lou X.W., Wang X., Ultrathin and Ultralong Single-Crystal Platinum Nanowire Assemblies with Highly Stable Electrocatalytic Activity, J. Am. Chem. Soc., 135(25) (2013) 9480-9485.
  • [6] Wang J., Barriers of scaling-up fuel cells: Cost, durability and reliability, Energy, 80 (2015) 509-521.
  • [7] Chen Y., Zhang G., Ma J., Zhou Y., Tang Y., Lu T., Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles, Int. J. Hydrogen Energy, 35(19) (2010) 10109-10117.
  • [8] Zaleska-Medynska A., Marchelek M., Diak M., Grabowska E., Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties, Adv. Colloid Interface Sci., 229 (2016) 80-107.
  • [9] Srinoi P., Chen Y.-T., Vittur V., Marquez M., Lee T., Bimetallic Nanoparticles: Enhanced Magnetic and Optical Properties for Emerging Biological Applications, Appl. Sci., 8 (2018) 1106.
  • [10] Li C.-H., Li M.-C., Liu S.-P., Jamison A.C., Lee D., Lee T.R., Lee T.-C., Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold–Silver Nanoshells, ACS Appl. Mater. Interfaces, 8(14) (2016) 9152-9161.
  • [11] Hien Pham T.T., Cao C., Sim S.J., Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations, J. Magn. Magn. Mater., 320(15) (2008) 2049-2055.
  • [12] Li X., Liu H., Liu S., Zhang J., Chen W., Huang C., Mao L., Effect of Pt–Pd hybrid nano-particle on CdS's activity for water splitting under visible light, Int. J. Hydrogen Energy, 41(48) (2016) 23015-23021.
  • [13] Farahmandjou M., Effect of Oleic Acid and Oleylamine Surfactants on the Size of FePt Nanoparticles, J. Supercond. Novel Magn., 25(6) (2012) 2075-2079.
  • [14] Jia Y., Cao Z., Chen Q., Jiang Y., Xie Z., Zheng L., Synthesis of composition-tunable octahedral Pt–Cu alloy nanocrystals by controlling reduction kinetics of metal precursors, Sci. Bull., 60 (2015).
  • [15] Saravanan G., Khobragade R., Chand Nagar L., Labhsetwar N., Ordered intermetallic Pt–Cu nanoparticles for the catalytic CO oxidation reaction, RSC Adv., 6(88) (2016) 85634-85642.
  • [16] Vernieres J., Steinhauer S., Zhao J., Chapelle A., Menini P., Dufour N., Diaz R.E., Nordlund K., Djurabekova F., Grammatikopoulos P., Sowwan M., Gas Phase Synthesis of Multifunctional Fe-Based Nanocubes, Adv. Funct. Mater., 27(11) (2017) 1605328.
  • [17] Salavati-Niasari M., Davar F., Mazaheri M., Shaterian M., Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition, J. Magn. Magn. Mater., 320(3) (2008) 575-578.
  • [18] Gul I.H., Maqsood A., Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route, J. Alloys Compd., 465(1) (2008) 227-231.
  • [19] Shemer G., Tirosh E., Livneh T., Markovich G., Tuning a Colloidal Synthesis to Control Co2+ Doping in Ferrite Nanocrystals, J. Phys. Chem. C., 111(39) (2007) 14334-14338.
  • [20] Millot N., Le Gallet S., Aymes D., Bernard F., Grin Y., Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis, J. Eur. Ceram. Soc., 27(2) (2007) 921-926.
  • [21] Lisiecki I., Pileni M.P., Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals:  The Limited Influence of Reverse Micelles, Langmuir, 19(22) (2003) 9486-9489.
  • [22] Meng Q., Zhang Y., Dong P., Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries, J. Clean. Prod., 180 (2018) 64-70.
  • [23] Fiévet F., Ammar-Merah S., Brayner R., Chau F., Giraud M., Mammeri F., Peron J., Piquemal J.Y., Sicard L., Viau G., The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions, Chem. Soc. Rev., 47(14) (2018) 5187-5233.
  • [24] Yan W., Zhang D., Zhang Q., Sun Y., Zhang S., Du F., Jin X., Synthesis of PtCu–based nanocatalysts: Fundamentals and emerging challenges in energy conversion, J. Energy Chem., 64 (2022) 583-606.
  • [25] Fang D., Wan L., Jiang Q., Zhang H., Tang X., Qin X., Shao Z., Wei Z., Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction, Nano Res., 12(11) (2019) 2766-2773.
  • [26] Liao Y., Yu G., Zhang Y., Guo T., Chang F., Zhong C.-J., Composition-Tunable PtCu Alloy Nanowires and Electrocatalytic Synergy for Methanol Oxidation Reaction, J. Phys. Chem. C., 120(19) (2016) 10476-10484.
  • [27] Huang K.-C., Ehrman S.H., Synthesis of Iron Nanoparticles via Chemical Reduction with Palladium Ion Seeds, Langmuir, 23(3) (2007) 1419-1426.
  • [28] Li N., Tang S., Meng X., Reduced Graphene Oxide Supported Bimetallic Cobalt–Palladium Nanoparticles with High Catalytic Activity towards Formic Acid Electro-oxidation, J Mater Sci Technol., 31(1) (2015) 30-36.
  • [29] Arán-Ais R.M., Vidal-Iglesias F.J., Solla-Gullón J., Herrero E., Feliu J.M., Electrochemical Characterization of Clean Shape-Controlled Pt Nanoparticles Prepared in Presence of Oleylamine/Oleic Acid, Electroanalysis, 27(4) (2015) 945-956.
  • [30] Tong Y.Y., Polyvinylpyrrolidone (pvp) for enhancing the activity and stability of platinum-based electrocatalysts, Google Patents, 2015.
  • [31] Cao Y., Yang Y., Shan Y., Huang Z., One-Pot and Facile Fabrication of Hierarchical Branched Pt–Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells, ACS Appl. Mater. Interfaces, 8(9) (2016) 5998-6003.
  • [32] Wu F., Niu W., Lai J., Zhang W., Luque R., Xu G., Highly Excavated Octahedral Nanostructures Integrated from Ultrathin Mesoporous PtCu3 Nanosheets: Construction of Three-Dimensional Open Surfaces for Enhanced Electrocatalysis, Small, 15(10) (2019) 1804407.
  • [33] Papa F., Negrila C., Miyazaki A., Balint I., Morphology and chemical state of PVP-protected Pt, Pt–Cu, and Pt–Ag nanoparticles prepared by alkaline polyol method, J. Nanopart. Res., 13(10) (2011) 5057.
  • [34] Du X., Luo S., Du H., Tang M., Huang X., Shen P.K., Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction, J. Mater. Chem. A., 4(5) (2016) 1579-1585.
  • [35] Bishnoi A., Kumar S., Joshi N., Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites, in: S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Eds.), Amsterdam: Elsevier, (2017) 313-337.
There are 35 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Doğan Kaya 0000-0002-6313-7501

Publication Date September 24, 2021
Submission Date December 13, 2020
Acceptance Date June 24, 2021
Published in Issue Year 2021

Cite

APA Kaya, D. (2021). Structural analysis of pure PtCu3 nanoparticles synthesized by modified Polyol process. Cumhuriyet Science Journal, 42(3), 586-592. https://doi.org/10.17776/csj.840132