Computational study on the structural, electronic, molecular and thermochemical properties of hypothetical [Tp(CO)2Mo≡C-Ph)]2+ and [L(CO)2Mo≡C-Ph)]+ carbyne complexes
Year 2021,
, 45 - 59, 29.03.2021
Zinet Zaim
Duran Karakaş
Abstract
The structural, electronic, molecular and thermochemical properties of hypothetical [Tp(CO)2Mo≡C-Ph)]2+ (1) [Tp = hydridotris(pyrazolyl) borate] and [L(CO)2Mo≡C-Ph)]+ (2) [L=hydrido 2-phenoxybis(pyrazolyl) borate] carbyne complexes were investigated by quantum chemical calculations. The carbyne complexes were optimized at B3LYP/LANL2DZ/6-31G(d) level. Structural parameters, vibration spectra, electronic spectra and NMR spectra were computationally obtained. Environment geometry of the molybdenum atom was predicted to be distorted octahedral. Mulliken atomic charges, molecular electrostatic potential maps, molecular orbital energy diagrams and frontier orbital contour diagrams were calculated and interpreted to estimate the electronic properties of the complexes. In order to predict the molecular properties of complexes, some electronic structure descriptors were calculated and discussed. The thermal stability of the complexes was investigated. Thermochemical parameters of the complexes were found to increase with increasing temperature. Metal-carbyne bond dissociation energies of complex (1) and complex (2) were calculated as 955 and 912 K, respectively.
Supporting Institution
Sivas Cumhuriyet University, Scientific Research Unit
Thanks
The authors are grateful for their support to the Sivas Cumhuriyet University, Scientific Research Unit (Project No: F-580).
References
- [1] Fischer E. O., Kreis G., Kreiter C. G., Müller J., Huttner G., Lorenz H., trans‐Halogeno [alkyl(aryl)carbyne] tetracarbonyl Complexes of Chromium, Molybdenum and Tungsten, A New Class of Compounds Having a Transition Metal‐Carbon Triple Bond, Angewandte Chemie International Edition in English, 12(7) (1973) 564-565.
- [2] Wu X., Daniliuc C.G., Hrib C.G., Tamm M., Phosphoraneiminato tungsten alkylidyne complexes as highly efficient alkyne metathesis catalysts, Journal of Organometallic Chemistry, 696(25) (2011) 4147-4151.
- [3] Lysenko S., Daniliuc C. G., Jones P. G., Tamm M., Tungsten alkylidyne complexes with ancillary imidazolin-2-iminato and imidazolidin-2-iminato ligands and their use in catalytic alkyne metathesis, Journal of Organometallic Chemistry, 744 (2013) 7-14.
- [4] Fey N., Orpen A. G., Harvey J. N., Building ligand knowledge bases for organometallic chemistry: Computational description of phosphorus (III)-donor ligands and the metal–phosphorus bond, Coordination Chemistry Reviews, 253(5-6) (2009) 704-722.
- [5] Snelders D. J., Van Koten G., Klein Gebbink R. J., Steric, electronic, and secondary effects on the coordination chemistry of ionic phosphine ligands and the catalytic behavior of their metal complexes, Chemistry–A European Journal, 17(1) (2011) 42-57.
- [6] Díez-González S., Nolan S. P., Stereo electronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding, Coordination Chemistry Reviews, 251(5-6) (2007) 874-883.
- [7] Peris E., Smart N-heterocyclic carbene ligands in catalysis, Chemical Reviews, 118(19) (2017) 9988-10031.
- [8] Kim H. P., Angelici R. J., Transition metal complexes with terminal carbyne ligands, In Advances In Organometallic Chemistry, 27 (1987) 51-111.
- [9] Hart I. J., Hill A. F., Stone F. G. A., Synthesis of alkynylmethylidyne molybdenum and-tungsten complexes and their reactions with octacarbonyldicobalt and hexacarbonylbis (g-cyclopentadienyl) dimolybdenum, J. Chem. Soc. Dalton Trans, (1989) 2261-2267.
- [10] McDermott G. A., Dorries A. M., Mayr A., Synthesis of carbyne complexes of chromium, molybdenum, and tungsten by formal oxide abstraction from acyl ligands, Organometallics, 6(5) (1987) 925-931.
- [11] Dossett S. J., Hill A. F., Jeffery J. C., Marken F., Sherwood P., Stone F. G. A., Chemistry of polynuclear metal complexes with bridging carbene or carbyne ligands. Part 79. Synthesis and reactions of the alkylidynemetal complexes [M([triple bond, length half m-dash]CR)(CO)2(η-C5H5)] (R=C6H3, Me 2-2, 6, M=Cr, Mo, or W; R=C6H4Me-2, C6H4OMe-2, or C6H4NMe2-4, M= MO); crystal structure of the compound [MoFe(µ-CC6H3 Me2-2,6)(CO)5(η-C5H5)], Journal of the Chemical Society Dalton Transactions, (9) (1988) 2453-2465.
- [12] Fernández J.R., Stone F.G.A., Chemistry of polynuclear metal complexes with bridging carbene or carbyne ligands. Part 83. Molybdenum and tungsten complexes containing the alkylidyne group C{η6-C6H4(OMe-2)Cr(CO)3}, Journal of the Chemical Society Dalton Transactions, (12) (1988) 3035-3040.
- [13] Hazra D., Sinha-Mahapatra D. K., Puranik V. G., Sarkar A., Synthesis and structure of novel, air-stable carbyne complexes of tungsten, Journal of Organometallic Chemistry, 671(1-2) (2003) 52-57.
- [14] Dennington R. D., Keith T. A., Millam C. M., GaussView 5.0 Wallingford. In CT, (2009).
- [15] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman, J. R., Nakatsuji H., Gaussian 09, (Revision A. 1, Inc., Wallingford CT) (2009).
- [16] Becke A. D., Density - functional thermochemistry. I. The effect of the exchange-only gradient correction, The Journal of Chemical physics, 96(3) (1992) 2155-2160.
- [17] Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B., 37(2) (1988) 785.
- [18] Karakaş D., Kariper S.E., Theoretical investigation on the vibrational and electronic spectra of three isomeric forms of dicobalt octacarbonyl, Journal of Molecular Structure, 1062 (2014) 77-81.
- [19] Gövdeli N., Karakaş D., Quantum chemical studies on hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes, Journal of Molecular Structure, 1163 (2018) 94-102.
- [20] Erkan S., Karakaş D., Computational investigation of structural, nonlinear optical and anti-tumor properties of dinuclear metal carbonyls bridged by pyridyl ligands with alkyne unit, Journal of Molecular Structure, 1199 (2020) 127054.
- [21] Mayr A., Hoffmeister H., Recent advances in the chemistry of metal-carbon triple bonds, In Advances In Organometallic Chemistry, 32 (1991) 227-324.
- [22] Jamróz M. H., Vibrational energy distribution analysis (VEDA): scopes and limitations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114 (2013) 220-230.
- [23] Majumdar D., Das S., Thomas R., Ullah Z., Sreejith S.S., Das D., Shukla P., Bankura K., Mishra D., Syntheses, X-ray crystal structures of two new Zn(II)-dicyanamide complexes derived from H2vanen-type compartmental ligands: Investigation of thermal, photoluminescence, in vitro cytotoxic effect and DFT-TDDFT studies, Inorganica Chimica Acta, 492 (2019) 221-234
- [24] Bowser J. R., Inorganic Chemistry, Brooks, Cole Publishing Company, (1993) 721-725.
- [25] Miessler G. L., Tarr D. A, Inorganic Chemistry, 2nd ed., New Jersey, Prentice Hall, (2003) 472-474.
- [26] Spasojevic-de Bire A., Dao N. Q., Fischer E. O., Hansen N.K., trans-Chlorotetracarbonyl (phenylmethylidyne) chromium: experimental electron deformation density, Inorganic Chemistry, 32(23) (1993) 5354-5361.
- [27] Pearson R. G., Absolute electronegativity and hardness: application to inorganic chemistry, Inorganic Chemistry, 27(4) (1988) 734-740.
- [28] Majumdar D., Agrawal Y., Thomas Y., Ullah Z., Santra M. K., Das S., Pal T.K., Bankura K., Mishra D., Syntheses, characterizations, crystal structures, DFT/TD‐DFT, luminescence behaviors and cytotoxic effect of bicompartmental Zn (II)‐dicyanamide Schiff base coordination polymers: An approach to apoptosis, autophagy and necrosis type classical cell death, Applied Organometallic Chemistry, 34(1) (2020) 5269.
- [29] Kose M., Hepokur C., Karakas D., McKee V., Kurtoglu M., Structural, computational and cytotoxic studies of square planar copper (II) complexes derived from dicyandiamide, Polyhedron, 117 (2016) 652-660.
- [30] Cohen E. R., Taylor B. N., The 1986 adjustment of the fundamental physical constants, Reviews of Modern Physics, 59(4) (1987) 1121.