Research Article
BibTex RIS Cite
Year 2021, , 60 - 67, 29.03.2021
https://doi.org/10.17776/csj.809306

Abstract

References

  • [1] Zhang X. F., Liu Z. G., Shen W., Gurunathan S., Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches., Int J. Mol. Sci., 17 (2016) 1534-1568.
  • [2] Das G., Patra J. K., Shin H. S., Biosynthesis and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies, Mater. Sci. Eng. C. Mater. Biol. Appl., 114 (2020) 111011.
  • [3] Panacek A., Smekalova M., Vecerova R., Bogdanova K., Roderova M., Kolar M., Kilianova M., Hradilova S., Froning J. P., Havrdova M., Prucek R., Zboril R., Kvitek L., Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae, Colloids Surf B Biointerfaces, 142 (2016) 392-399.
  • [4] Wang Y., Li Z., Yang D., Qiu X., Xie Y., Zhang X., Microwave-mediated fabrication of silver nanoparticles incorporated lignin-based composites with enhanced antibacterial activity via electrostatic capture effect, J. Colloid Interface Sci., 583 (2020) 80-88.
  • [5] Elgamouz A., Idriss H., Nassab C., Bihi A., Bajou K., Hasan K., Abu Haija M., Patole S.P., Green Synthesis, Characterization, Antimicrobial, Anti-Cancer, and Optimization of Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped Silver Nanoparticles, Nanomaterials (Basel), 10 (2020).
  • [6] Dube P., Meyer S., Madiehe A., Meyer M., Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens, Nanotechnology, 31 (2020) 505-607.
  • [7] Alqahtani M. A., Al Othman M. R., Mohammed A. E., Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens, Sci. Rep., 10 (2020) 16781.
  • [8] Garibo D., Borbon-Nunez H. A., de Leon J. N. D., Garcia Mendoza E., Estrada I., Toledano-Magana Y., Tiznado H., Ovalle-Marroquin M., Soto-Ramos A. G., Blanco A., Rodriguez J. A., Romo O. A., Chavez-Almazan L. A., Susarrey-Arce, A., Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity, Sci. Rep., 10 (2020) 12805.
  • [9] Willyard C., The drug-resistant bacteria that pose the greatest health threats, Nature, 543 (2017) 15.
  • [10] Xiu Z. M., Zhang Q. B., Puppala H. L., Colvin V. L., Alvarez P. J. Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 12 (2012) 4271-4275.
  • [11] Dzul-Erosa M. S., Cauich-Diaz M. M., Razo-Lazcano T. A., Avila-Rodriguez M., Reyes-Aguilera J. A., Gonzalez-Munoz M. P., Aqueous leaf extracts of Cnidoscolus chayamansa (Mayan chaya) cultivated in Yucatan Mexico. Part II: Uses for the phytomediated synthesis of silver nanoparticles, Mater. Sci. Eng. C. Mater. Biol. Appl., 91 (2018) 838-852.
  • [12] Amooaghaie R., Saeri M. R., Azizi M., Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles, Ecotoxicol Environ. Saf., 120 (2015) 400-408.
  • [13] Elmastas M., Erenler R., Isnac B., Aksit H., Sen O., Genc N., Demirtas I., Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L., Nat. Prod. Res., 30 (2016) 299-304.
  • [14] Antognoni F., Iannello C., Mandrone M., Scognamiglio M., Fiorentino A., Giovannini P. P., Poli F., Elicited Teucrium chamaedrys cell cultures produce high amounts of teucrioside, but not the hepatotoxic neo-clerodane diterpenoids, Phytochemistry, 81 (2012) 50-59.
  • [15] Bedir E., Lata, H., Schaneberg B., Khan I. A., Moraes R. M., Micropropagation of Hydrastis canadensis: Goldenseal a North American endangered species, Planta Med., 69 (2003) 86-88.
  • [16] Erden Tayhan S., Bilgin S., Elmastaş M., Evaluation of the Wound Healing Potential of Teucrioside, Int. J. Chem. Technol., 2(1) (2018) 16-19.
  • [17] Hormozi-Nezhad M. R., Robatjazi H., Jalali-Heravi M., Thorough tuning of the aspect ratio of gold nanorods using response surface methodology, Anal Chim Acta, 779 (2013) 14-21.
  • [18] Nikaeen G., Yousefinejad S., Rahmdel S., Samari F., Mahdavinia S., Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity, Sci. Rep., 10 (2020) 9642.
  • [19] Hashemi S. H., Kaykhaii M., Jamali Keikha A., Sajjadi Z., Mirmoghaddam M., Application of response surface methodology for silver nanoparticle stir bar sorptive extraction of heavy metals from drinking water samples: a Box-Behnken design, Analyst, 144 (2019) 3525-3532.
  • [20] Sivagnanam S. P., Getachew A. T., Choi J. H., Green Synthesis of Silver Nanoparticles from Deoiled Brown Algal Extract via Box-Behnken Based Design and Their Antimicrobial and Sensing Properties, Green Process Synth., (2017) 147–160.
  • [21] Wiegand I., Hilpert K., Hancock R. E., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat Protoc., 3 (2008) 163-175.
  • [22] Bhutto A. A., Kalay S., Sherazi S. T. H., Culha M., Quantitative structure-activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles, Talanta, 189 (2018) 174-181.
  • [23] Parthiban E., Manivannan N., Ramanibai R., Mathivanan N., Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens, Biotechnol Rep., 21 (2019) 297-301.
  • [24] Manosalva N., Tortella G., Cristina Diez M., Schalchli H., Seabra A. B., Duran N., Rubilar O., Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity, World J. Microbiol. Biotechnol., 35 (2019) 88.
  • [25] Mousavi S. M., Hashemi S. A., Ghasemi Y., Atapour A., Amani A. M., Savar Dashtaki A., Babapoor A., Arjmand O., Green synthesis of silver nanoparticles toward bio and medical applications: review study, Artif Cells Nanomed. Biotechnol, 46 (2018) 855-872.

Biosynthesis of silver nanoparticles from Teucrioside and investigation of its antibacterial activity

Year 2021, , 60 - 67, 29.03.2021
https://doi.org/10.17776/csj.809306

Abstract

Teucrioside, 9′-decarboxyrosmarinic acid 4′-O-α-rhamnosyl-(1‴→6‴)-O-β-galactosyl-(1‴→4″)-Oα-rhamnoside is a natural phenolic compound. It has been isolated and identified from the genus Teucrium. Teucrium genus is widely used in traditional medicine for its antioxidant, diuretic, antiulcer, antitumor, anti-inflammatory, antispasmodic and antibacterial properties. Since silver nanoparticles have superior physicochemical properties, they have an important role in biology and medicine. In this study, the biosynthesis of silver nanoparticles was carried out using Teucrioside and AgNO3. The effect of five independent variables (pH, AgNO3 concentration, Teucrioside volume/total volume, microwave power and time) on nanoparticle formation was evaluated using a central composite design (CCD) based response surface methodology (RSM). Nanoparticle formation was demonstrated by UV-Vis spectroscopy and FTIR analysis. The particle size and zeta potential of silver nanoparticles were determined by dynamic light scattering method (DLS). The results showed that 5 mM AgNO3, Teucrioside volume/total volume:0.3, 475 watt, 60 sec. and pH:7.5 were optimal reaction parameters. The antibacterial activity of biosynthesized silver nanoparticles was tested against common pathogens such as Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumonia. Obtained results demonstrated that biosynthesized silver nanoparticles from Teucrioside have great potential as a new antibacterial agent.

References

  • [1] Zhang X. F., Liu Z. G., Shen W., Gurunathan S., Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches., Int J. Mol. Sci., 17 (2016) 1534-1568.
  • [2] Das G., Patra J. K., Shin H. S., Biosynthesis and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies, Mater. Sci. Eng. C. Mater. Biol. Appl., 114 (2020) 111011.
  • [3] Panacek A., Smekalova M., Vecerova R., Bogdanova K., Roderova M., Kolar M., Kilianova M., Hradilova S., Froning J. P., Havrdova M., Prucek R., Zboril R., Kvitek L., Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae, Colloids Surf B Biointerfaces, 142 (2016) 392-399.
  • [4] Wang Y., Li Z., Yang D., Qiu X., Xie Y., Zhang X., Microwave-mediated fabrication of silver nanoparticles incorporated lignin-based composites with enhanced antibacterial activity via electrostatic capture effect, J. Colloid Interface Sci., 583 (2020) 80-88.
  • [5] Elgamouz A., Idriss H., Nassab C., Bihi A., Bajou K., Hasan K., Abu Haija M., Patole S.P., Green Synthesis, Characterization, Antimicrobial, Anti-Cancer, and Optimization of Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped Silver Nanoparticles, Nanomaterials (Basel), 10 (2020).
  • [6] Dube P., Meyer S., Madiehe A., Meyer M., Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens, Nanotechnology, 31 (2020) 505-607.
  • [7] Alqahtani M. A., Al Othman M. R., Mohammed A. E., Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens, Sci. Rep., 10 (2020) 16781.
  • [8] Garibo D., Borbon-Nunez H. A., de Leon J. N. D., Garcia Mendoza E., Estrada I., Toledano-Magana Y., Tiznado H., Ovalle-Marroquin M., Soto-Ramos A. G., Blanco A., Rodriguez J. A., Romo O. A., Chavez-Almazan L. A., Susarrey-Arce, A., Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity, Sci. Rep., 10 (2020) 12805.
  • [9] Willyard C., The drug-resistant bacteria that pose the greatest health threats, Nature, 543 (2017) 15.
  • [10] Xiu Z. M., Zhang Q. B., Puppala H. L., Colvin V. L., Alvarez P. J. Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 12 (2012) 4271-4275.
  • [11] Dzul-Erosa M. S., Cauich-Diaz M. M., Razo-Lazcano T. A., Avila-Rodriguez M., Reyes-Aguilera J. A., Gonzalez-Munoz M. P., Aqueous leaf extracts of Cnidoscolus chayamansa (Mayan chaya) cultivated in Yucatan Mexico. Part II: Uses for the phytomediated synthesis of silver nanoparticles, Mater. Sci. Eng. C. Mater. Biol. Appl., 91 (2018) 838-852.
  • [12] Amooaghaie R., Saeri M. R., Azizi M., Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles, Ecotoxicol Environ. Saf., 120 (2015) 400-408.
  • [13] Elmastas M., Erenler R., Isnac B., Aksit H., Sen O., Genc N., Demirtas I., Isolation and identification of a new neo-clerodane diterpenoid from Teucrium chamaedrys L., Nat. Prod. Res., 30 (2016) 299-304.
  • [14] Antognoni F., Iannello C., Mandrone M., Scognamiglio M., Fiorentino A., Giovannini P. P., Poli F., Elicited Teucrium chamaedrys cell cultures produce high amounts of teucrioside, but not the hepatotoxic neo-clerodane diterpenoids, Phytochemistry, 81 (2012) 50-59.
  • [15] Bedir E., Lata, H., Schaneberg B., Khan I. A., Moraes R. M., Micropropagation of Hydrastis canadensis: Goldenseal a North American endangered species, Planta Med., 69 (2003) 86-88.
  • [16] Erden Tayhan S., Bilgin S., Elmastaş M., Evaluation of the Wound Healing Potential of Teucrioside, Int. J. Chem. Technol., 2(1) (2018) 16-19.
  • [17] Hormozi-Nezhad M. R., Robatjazi H., Jalali-Heravi M., Thorough tuning of the aspect ratio of gold nanorods using response surface methodology, Anal Chim Acta, 779 (2013) 14-21.
  • [18] Nikaeen G., Yousefinejad S., Rahmdel S., Samari F., Mahdavinia S., Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity, Sci. Rep., 10 (2020) 9642.
  • [19] Hashemi S. H., Kaykhaii M., Jamali Keikha A., Sajjadi Z., Mirmoghaddam M., Application of response surface methodology for silver nanoparticle stir bar sorptive extraction of heavy metals from drinking water samples: a Box-Behnken design, Analyst, 144 (2019) 3525-3532.
  • [20] Sivagnanam S. P., Getachew A. T., Choi J. H., Green Synthesis of Silver Nanoparticles from Deoiled Brown Algal Extract via Box-Behnken Based Design and Their Antimicrobial and Sensing Properties, Green Process Synth., (2017) 147–160.
  • [21] Wiegand I., Hilpert K., Hancock R. E., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat Protoc., 3 (2008) 163-175.
  • [22] Bhutto A. A., Kalay S., Sherazi S. T. H., Culha M., Quantitative structure-activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles, Talanta, 189 (2018) 174-181.
  • [23] Parthiban E., Manivannan N., Ramanibai R., Mathivanan N., Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens, Biotechnol Rep., 21 (2019) 297-301.
  • [24] Manosalva N., Tortella G., Cristina Diez M., Schalchli H., Seabra A. B., Duran N., Rubilar O., Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity, World J. Microbiol. Biotechnol., 35 (2019) 88.
  • [25] Mousavi S. M., Hashemi S. A., Ghasemi Y., Atapour A., Amani A. M., Savar Dashtaki A., Babapoor A., Arjmand O., Green synthesis of silver nanoparticles toward bio and medical applications: review study, Artif Cells Nanomed. Biotechnol, 46 (2018) 855-872.
There are 25 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Özlem Kaplan 0000-0002-3052-4556

Nazan Gökşen 0000-0001-5269-1067

Publication Date March 29, 2021
Submission Date October 12, 2020
Acceptance Date February 27, 2021
Published in Issue Year 2021

Cite

APA Kaplan, Ö., & Gökşen, N. (2021). Biosynthesis of silver nanoparticles from Teucrioside and investigation of its antibacterial activity. Cumhuriyet Science Journal, 42(1), 60-67. https://doi.org/10.17776/csj.809306