Research Article
BibTex RIS Cite
Year 2021, , 397 - 402, 30.06.2021
https://doi.org/10.17776/csj.792209

Abstract

References

  • [1] Wu M.K., Ashbourn J., Torng C. J., Hor P.H., Meng R.L., Gao L., Huang Z.J., Wang Y.Q. and Chu C.W., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett., 58 (1987) 908.
  • [2] Zhang R.X., Yang H.X., Tian H.F., Chen G.F., Wu S.L., Wei L.L., Li J.Q., Superconductivity in the orthorhombic phase of thermoelectric CsPbxBi4_xTe6 with 0.3≤0≤1.0, Journal of Solid State Chemistry, 232 (2015) 50–55.
  • [3] Mumkami M., Melt processing of YBaCuO superconductors and critical currents, Modern Physica Lett. B 4(3) (1990) 163.
  • [4] Yanmaz E., Drake A., Harris I.R. and Abell J.S., Melt processing of powdered arc-cast YBa2Cu3Oy materials, J. Alloys Compounds, 195 (1993) 23.
  • [5] Gencer A., Ateg A., Aksu E., Nezir S., Çelebi S. And Yanmaz E., Microstructural and physical properties of YBa2Cu3O&−δ superconductors prepared by the flame-quench-melt-growth (FQMG) method, Physica C, 279 (1997) 165-172.
  • [6] Naik S.P.K., Raju P.M.S., Seshubai V., Role of Sm and Nb on the preform optimized infiltration growth processed YBCO superconductors, Materials Chemistry and Physics, 182 (2016) 503-507.
  • [7] Vovk R.V., Khadzhai G.Y., Dobrovolskiy O.V., Resistive measurements of the pseudogap in lightly Pr-doped Y1-x PrxBa2Cu3O7-χ single crystals under high hydrostatic pressure, Solid State Communications, 204 (2015) 64–66.
  • [8] Dadras S., Gharehgazloo Z., Effect of Au nano-particles doping on polycrystalline YBCO high temperature superconductor, Physica B, 492 (2016) 45–49.
  • [9] Guo N.N., Leu M.C., Additive manufacturing: technology, applications and research needs, Front. Mech. Eng., 8 (2013) 215–243.
  • [10] Wei X., Nagarajan R.S., Peng E., Xue J., Wang J., Ding J., Fabrication of YBa2Cu3O7_x (YBCO) superconductor bulk structures by extrusion freeforming, Ceramics International, 42 (2016) 15836–15842.
  • [11] Volochova D., et al., YBCO bulk superconductors doped with gadolinium and samarium, Physica C-Superconductivity and Its Applications, (2013) 494.
  • [12] Volochova D., et al., Contamination of YBCO bulk superconductors by samarium and ytterbium, Physica C-Superconductivity and Its Applications, (2014) 496.
  • [13] Grigoryan S., et al., A new way of preparing the Y–Ba–Cu–O high-temperature superconductor using the sol–gel method, Supercond. Sci. Technol., (2003), 16 (10) 1202.
  • [14] Tang X., Zhao Y. and Grivel J.C., Influence of initial pH on the microstructure of YBa2Cu3O7-x superconducting thin films derived from DEA-aqueous sol-gel method, Ceramics International, (2013) 39.
  • [15] Suan M.S.M. and Johan M.R., Synthesis of Al2O3 nanoparticles highly distributed in YBa2Cu3O7 superconductor by citrate-nitrate auto-combustion reaction, Physica C-Superconductivity and Its Applications, 492 (2013) 49.
  • [16] Li S.W., et al.. Morphology and superconducting properties of photo-assisted MOCVD processed YBCO film by variation of sublimation temperature of the Cu-based precursor, Physica C-Superconductivity and Its Applications, (2012) 478.
  • [17] Baghurst D.R., Chippindale A.M., and Mingos D.M.P., Microwave syntheses for superconductging ceramics, Nature, (1988) 332.
  • [18] Schildermans I., Van Bael M.K., Knaepen E., Yperman J., Mullens J. and Poucke L.V., Pyhsica C, (1997) 4848278, 55.
  • [19] Cheng C.W., Innes A.C.R., McN Alfords N., Harmer M.A. and Birchall J., The effect of porosity on the superconducting properties of YBa2Cu3Ox ceramic, Supercond. Sci. Technol. 1, 113 (1988).
  • [20] Murakami M., Supercond. Processing of bulk YBaCuO, Sci. Technol. 5, 185 (1992).
  • [21] LaGraff J.R.and Payne D.A., Chemical diffusion of oxygen in single-crystal and polycrystalline YBa2Cu3O6+x determined by electrical-resistance measurements, The American Physical Society, Phys. Rev. B. 47 (1993) 3380.
  • [22] Dadras S., Dehghani S., Davoudiniya M., Falahati S., Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping, Materials Chemistry and Physics.,193 (2017) 496-500.
  • [23] Yvon K. and François M., Crystal structures of high-Tc oxides, Z. Phys. B - Condensed Matter., 76(1989) 413.
  • [24] Alecu G., Crystal Structures of Some High-Temperature Superconductors, Romanion Reports Of Physics., 56 (2004) 404.
  • [25] Cava R.J., Batlogg B., van Dover R.B., Murphy D.V., Sunshine S., Siegrist T., Remeika J.P., Rietman E.A., Zahurak S. and Espinosa G.P., Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9-6, Physical Review Letter.,59 (1987) 1676.
  • [26] Kikuchi M., Syono Y., Tokiwa A., Oh-Ishi K., Araı H., Hiraga K., Kobayashi N., Sasaoka T. and Muto Y., Japanese jourmal of Applied Physics., 26 (1987) L1066.
  • [27] Ausloos M., Superconductivity in YBa1.95Cs0.05Cu3O7−y granular ceramics, Physical Review B., 39 (1989) 2729.
  • [28] Goldford R.B., Lelental M. and Thompson C.A., Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors., NISTIR. 3977 (1991) 1.
  • [29] Nikola M. and Goldfarb R.B., Flux creep and activation energies at the grain boundaries of Y-Ba-Cu-O superconductors, Physical Review B., 39 (1989) 6615.
  • [30] Calzona V., Cimberle M.R., Ferdeghini C., Putti M., Sırı A.S., Vaccarone R., Supercurrent lengthscale in sintered YBCO and critical state model, Physica C., 157 (1989) 425.

Investigation of physical and structural properties of cs doped y1ba2cu3o7 superconductors

Year 2021, , 397 - 402, 30.06.2021
https://doi.org/10.17776/csj.792209

Abstract

In this work, YBa2‑xCsxCu3O7‑δ (x= 0.05, 0.1, 0.2 and 0.3 wt. %) samples were prepared by using solid state reaction method. Some electrical, physical and structural properties of these compounds were examined by using SEM (scanning electron microscopy), XRD (X-ray diffraction), electrical resistivity, critical current density and AC susceptibility measurements, respectively. On the basis of the SEM measurements, it would seem that increasing the amount of Cs doping, the porous structures decrease and the grain size increases up to approximately 50 μm. Unit cell parameters were calculated by employing XRD measurements. On the basis of the data obtained from X-ray diffraction, Cs atoms displaced Ba atoms in the crystal structure. From the measurements of electrical resistivity at 80 K-120 K temperature, it was determined that the highest transition temperature was 91.5 K after addition of 0.05 wt. % Cs. The critical transition temperature was decreased by increasing the amount of Cs doping. Critical current density measurements on the same samples showed that as the amount of Cs doping increases, the values of Jc decrease. AC magnetic susceptibility measurements showed a sharper transition to the superconducting state in YBa2‑xCsxCu3O7‑δ (x= 0.05, 0.1, 0.2 and 0.3 wt.%) samples with the increase in the additive amount.

References

  • [1] Wu M.K., Ashbourn J., Torng C. J., Hor P.H., Meng R.L., Gao L., Huang Z.J., Wang Y.Q. and Chu C.W., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett., 58 (1987) 908.
  • [2] Zhang R.X., Yang H.X., Tian H.F., Chen G.F., Wu S.L., Wei L.L., Li J.Q., Superconductivity in the orthorhombic phase of thermoelectric CsPbxBi4_xTe6 with 0.3≤0≤1.0, Journal of Solid State Chemistry, 232 (2015) 50–55.
  • [3] Mumkami M., Melt processing of YBaCuO superconductors and critical currents, Modern Physica Lett. B 4(3) (1990) 163.
  • [4] Yanmaz E., Drake A., Harris I.R. and Abell J.S., Melt processing of powdered arc-cast YBa2Cu3Oy materials, J. Alloys Compounds, 195 (1993) 23.
  • [5] Gencer A., Ateg A., Aksu E., Nezir S., Çelebi S. And Yanmaz E., Microstructural and physical properties of YBa2Cu3O&−δ superconductors prepared by the flame-quench-melt-growth (FQMG) method, Physica C, 279 (1997) 165-172.
  • [6] Naik S.P.K., Raju P.M.S., Seshubai V., Role of Sm and Nb on the preform optimized infiltration growth processed YBCO superconductors, Materials Chemistry and Physics, 182 (2016) 503-507.
  • [7] Vovk R.V., Khadzhai G.Y., Dobrovolskiy O.V., Resistive measurements of the pseudogap in lightly Pr-doped Y1-x PrxBa2Cu3O7-χ single crystals under high hydrostatic pressure, Solid State Communications, 204 (2015) 64–66.
  • [8] Dadras S., Gharehgazloo Z., Effect of Au nano-particles doping on polycrystalline YBCO high temperature superconductor, Physica B, 492 (2016) 45–49.
  • [9] Guo N.N., Leu M.C., Additive manufacturing: technology, applications and research needs, Front. Mech. Eng., 8 (2013) 215–243.
  • [10] Wei X., Nagarajan R.S., Peng E., Xue J., Wang J., Ding J., Fabrication of YBa2Cu3O7_x (YBCO) superconductor bulk structures by extrusion freeforming, Ceramics International, 42 (2016) 15836–15842.
  • [11] Volochova D., et al., YBCO bulk superconductors doped with gadolinium and samarium, Physica C-Superconductivity and Its Applications, (2013) 494.
  • [12] Volochova D., et al., Contamination of YBCO bulk superconductors by samarium and ytterbium, Physica C-Superconductivity and Its Applications, (2014) 496.
  • [13] Grigoryan S., et al., A new way of preparing the Y–Ba–Cu–O high-temperature superconductor using the sol–gel method, Supercond. Sci. Technol., (2003), 16 (10) 1202.
  • [14] Tang X., Zhao Y. and Grivel J.C., Influence of initial pH on the microstructure of YBa2Cu3O7-x superconducting thin films derived from DEA-aqueous sol-gel method, Ceramics International, (2013) 39.
  • [15] Suan M.S.M. and Johan M.R., Synthesis of Al2O3 nanoparticles highly distributed in YBa2Cu3O7 superconductor by citrate-nitrate auto-combustion reaction, Physica C-Superconductivity and Its Applications, 492 (2013) 49.
  • [16] Li S.W., et al.. Morphology and superconducting properties of photo-assisted MOCVD processed YBCO film by variation of sublimation temperature of the Cu-based precursor, Physica C-Superconductivity and Its Applications, (2012) 478.
  • [17] Baghurst D.R., Chippindale A.M., and Mingos D.M.P., Microwave syntheses for superconductging ceramics, Nature, (1988) 332.
  • [18] Schildermans I., Van Bael M.K., Knaepen E., Yperman J., Mullens J. and Poucke L.V., Pyhsica C, (1997) 4848278, 55.
  • [19] Cheng C.W., Innes A.C.R., McN Alfords N., Harmer M.A. and Birchall J., The effect of porosity on the superconducting properties of YBa2Cu3Ox ceramic, Supercond. Sci. Technol. 1, 113 (1988).
  • [20] Murakami M., Supercond. Processing of bulk YBaCuO, Sci. Technol. 5, 185 (1992).
  • [21] LaGraff J.R.and Payne D.A., Chemical diffusion of oxygen in single-crystal and polycrystalline YBa2Cu3O6+x determined by electrical-resistance measurements, The American Physical Society, Phys. Rev. B. 47 (1993) 3380.
  • [22] Dadras S., Dehghani S., Davoudiniya M., Falahati S., Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping, Materials Chemistry and Physics.,193 (2017) 496-500.
  • [23] Yvon K. and François M., Crystal structures of high-Tc oxides, Z. Phys. B - Condensed Matter., 76(1989) 413.
  • [24] Alecu G., Crystal Structures of Some High-Temperature Superconductors, Romanion Reports Of Physics., 56 (2004) 404.
  • [25] Cava R.J., Batlogg B., van Dover R.B., Murphy D.V., Sunshine S., Siegrist T., Remeika J.P., Rietman E.A., Zahurak S. and Espinosa G.P., Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9-6, Physical Review Letter.,59 (1987) 1676.
  • [26] Kikuchi M., Syono Y., Tokiwa A., Oh-Ishi K., Araı H., Hiraga K., Kobayashi N., Sasaoka T. and Muto Y., Japanese jourmal of Applied Physics., 26 (1987) L1066.
  • [27] Ausloos M., Superconductivity in YBa1.95Cs0.05Cu3O7−y granular ceramics, Physical Review B., 39 (1989) 2729.
  • [28] Goldford R.B., Lelental M. and Thompson C.A., Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors., NISTIR. 3977 (1991) 1.
  • [29] Nikola M. and Goldfarb R.B., Flux creep and activation energies at the grain boundaries of Y-Ba-Cu-O superconductors, Physical Review B., 39 (1989) 6615.
  • [30] Calzona V., Cimberle M.R., Ferdeghini C., Putti M., Sırı A.S., Vaccarone R., Supercurrent lengthscale in sintered YBCO and critical state model, Physica C., 157 (1989) 425.
There are 30 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Öznur Bağ 0000-0002-9944-8221

Saffet Nezir 0000-0002-7101-9601

Publication Date June 30, 2021
Submission Date September 9, 2020
Acceptance Date April 12, 2021
Published in Issue Year 2021

Cite

APA Bağ, Ö., & Nezir, S. (2021). Investigation of physical and structural properties of cs doped y1ba2cu3o7 superconductors. Cumhuriyet Science Journal, 42(2), 397-402. https://doi.org/10.17776/csj.792209