Research Article
BibTex RIS Cite
Year 2020, , 712 - 719, 30.09.2020
https://doi.org/10.17776/csj.764614

Abstract

References

  • Yang D., An B., Wei W., Tian L., Huang B., Wang H. Coppercatalyzed domino synthesis of nitrogen heterocycle-fused benzoimidazole and 1,2,4- benzothiadiazine 1,1-dioxide derivatives, A C S Comb Sci., 17 (2015) 113–119.
  • Iizawa, Y., et al. Therapeutic effect of cefozopran (SCE-2787), a new parenteral cephalosporin, against experimental infections in mice. Antimicrobial Agents and Chemotherapy 37 (1993) 100-105.
  • Oruc, E.E., et al. 1,3,4-thiadiazole derivatives. Synthesis, structure elucidation, and structure-antituberculosis activity relation- ship investigation. Journal of Medicinal Chemistry. 47 (2004) 6760-6767.
  • Foroumadi, A., et al. Antituberculosis agents VIII. Synthesis and in vitro antimycobacterial activity of alkyl alpha-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetates. Farmaco. 58 (2003) 1073-1076.
  • Kamal M.D., et al. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorganic and Medicinal Chemistry. 14 (2006) 3672–3680.
  • Mullick P., et al. Thiadiazole derivatives as potential anticonvulsant agents. Bulletin of the Korean Chemical Society. 32 (2011) 1011-1016.
  • Clerici, F., et al. Synthesis of 2-amino-5-sulfanyl-1,3,4-thiadiazole derivatives and evaluation of their antidepressant and anxi-olytic activity. Journal of Medicinal Chemistry. 44 (2001) 931-936.
  • Hasui,T., et al. Identification of benzoxazin-3-one derivatives as novel, potent, and selective nonsteroidal mineralocorticoid receptor antagonists. Journal of Medicinal Chemistry 54 (2011) 8616-8631.
  • Zheng, K. B., et al. Synthesis and antitumor activity of N1-acetylamino-(5-alkyl/aryl- 1,3,4-thiadiazole-2-yl)-5-fluorouracil deriva- tives. Chinese Chemical Letters. 19 (2008) 1281-1284.
  • [Chen, C.J., et al. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2sulfonyl-1,3,4-thiadiazole and 5-(3,4,5- trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorganic& Medicinal Chemistry. 15 (2007) 3981-3989.
  • Suzuki, F., Kawakami, I., Yamamoto, S., Kosai, Y. Japan Kokai, 7776432 1977; Chem. Abstr., 88, (1978) 100351.
  • Abdel-Ramhan A. E., Mahmoud A. M., El-Sherief H.A., Gahatta A.G. Chem. Abstr. 98 (1983) 72012b.
  • Foerster H., Mues V., Baasner B., Hagemann H., Eue I., Schmidt R. EuropeanPatent,60426 1981; Chem. Abstr. (1983) 72107m.
  • Tiwari N., Chaturvedi B., Nizamuddin A. ynthesis and fungicidal activities of some 2-aryloxymethyl-1,3,4-thiadiazolo[2,3,-b]-quinazolin-4-one and 2-aryloxymethyl-5-substituted-1,3,4-thiadiazolo[3,2,-a]-1,3,5-triazine-7-thiones. Indian J. Chem., 28 (1989) 200-202.
  • Singh H., Yadav L.D.S., Agri. Biol. Chem., 40 (1976) 759-764; (b) Chaaban I., Oji O.O.J. Indian Chem Soc., 61 (1984) 523-525; (c) Mohsen A., Omer M.E., Aboulwafa O.M.J. Heterocycl. Chem., 21 (1984) 1415-1418; (d) Hiremath S.P., Birador J.S., Kudari S.M.J. Indian Chem. Soc., 61 (1984) 74-76.
  • Rao A. V. R., Bose D.S., Gurjar M.K., Ravindranatran T. Tetrahedron, 45 (1989) 70317040; (b) Seydenpenn J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis, John Wiley: New York, (1995); (c) Wright A.E., Schafer M., Midland S., Munnecke D.E., Sims J.J. Tetrahedron Lett., 30 (1989) 5699-5702.
  • Kolb H.C., Sharpless K.B., A simplified procedure for the stereospecific transformation of 1,2-diols into epoxides. Tetrahedron, 48 (1992) 10515-10530.
  • Lohray B.B., Ahuja J.R., J. Chem. Soc. (1991) 95-97; (b) Nicolaou K.C., Huang X., Snyder S.A., Rao P.B., Bela M., Reddy M.V. Angew. Chem. Int. 41 (2002) 834.
  • Parida S., Dordick J.S.J. Am. Chem. Soc., 113 (1991) 2253-2259; (b) Nelson W.L., Wennerstrom J.E., Sankar S.R.J. Org. Chem., 42 (1977) 1006-1012; (c) Bian chi D., Bosetti A., Cesti P., Golini P. Tetrahedron Lett., 33 (1992) 3231-3234.
  • Kurina-Sanz M., Bisogno F.R., Lavandera I., Orden A.A., Gotor V., Promiscuous substrate binding explains the enzymatic stereo- and regiocontrolled synthesis of enantiopure hydroxy ketones and diols. Adv. Synth. Catal., 351 (2009) 1842– 1848.
  • Supuran C.T., Scozzafava A., Carbonic anhydrase inhibitors. Curr Med Chem Immunol Endocrinol Metab Agents. 1 (2001) 61–97.
  • Singh, N., Rajini, P. S., Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85 (2004) 611.
  • Prior, R. L., Wu, X., Schaich, K., Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 53 (2005) 4290.
  • Uchida, K., Role of Reactive Aldehyde in Cardiovascular Diseases. Free Radical Biol. Med. 28 (2000) 1685.
  • [25] Cadenas, E., Davies, K. J. A., Mitochondrial Free Radical Generation, Oxidative Stress, and Aging. Free Radical Biol. Med. 29 (2000) 222. Offeing, B.M., Martelli, S.,. Steochemistry and Antitumour Activity of Platinium Metal Complexes of 2- Acetypyridine Thiosemicarbazones. Transition Metal Chemistry., 22 (1997) 263-269.
  • Karatepe A., (1r, 2r)-etan-1,2 diol tiyadiyazol türevlerinin sentezi, karekterizasyonu ve biyolojik özellikleri. Doktora tezi, Bingöl, 2020.
  • Karatepe, M., Simultaneous Determination of Ascorbic Acid and Free Malondialdehyde in Human Serum by HPLC/UV. LC-GC North America. 22 (2004) 362-5.
  • Catignani, G.L., Simultancous Determination of Retinol and α-Tocopherol in Serum of Plazma by Liquid Chromatography, Clin. Chem., 2914 (1983) 708-712.
  • Almeida, G.M., Thomazellab, D.P.T., Pereira, G.A.G., Monteiro G., Heterologous expression of an alternative oxidase from Moniliophthora perniciosa in Saccharomyces cerevisiae: Antioxidant function and in vivo platform for the study of new drugs against witches’ broom disease. Fungal Genetics and Biology, 126 (2019) 50–55.
  • Yildirim A., Mavi A., Kara A.A., Determination of antioxidant and antimicrobial activities of Rumexcrispus L. extracts,J. Agri. Food. Chem. 49 (2001) 4083.
  • Nordberg, J., Arner, E.S.J., , Reactive Oxygen Species, Antioxidants and The Mammalian Thioredoxin System, Free Rad. Biol. and Med., 31(11) (2001) 1287-1317.
  • Maccarrone, M (Maccarrone, M); Catani, MV (Catani, MV); Iraci, S (Iraci, S); Melino, G (Melino, G); Agro, AF (Agro, AF) A survey of reactive oxygen species and their role in dermatology. J. of the Eu. Academy of Der. and Ven. 8 (1997) 185-202.
  • Morrow J.D., The isoprostanes: their quantification as an index of oxidant stress status in vivo. Drug Metab Rev. 32 (2000) 377-85.
  • Vaca, C.E., Wilhelm J., Ringdahl M. H., Interaction of lipid peroxidation products with DNA. A review. Mutation Res., 195 (1988) 137-149.
  • EnnamanyaJ.P., LavergnebJ.P., Reboudb G., Mode of action of bolesatine, a cytotoxic glycoprotein from Boletus satanas Lenz. Mechanistic approachesToxicolog, 100 (1995) 51-55.
  • Bird, R.P., Draper, H.H., Comperative Studieson Differant Methods of Malondialdehyde Determination. Methods in Enzymology., 105 (1984) 299-305.
  • Tomita M., Okuyama T., Kawai S.J., Determination of malonaldehyde in oxidized biological materials by high-performance liquid chromatography. Chromatogr. 31 (1990) 391-7.
  • Kus C., Kilcigil G.A., Ozbey S., Kaynak F.B., Kaya M., Coban T., Eke B.,C., Synthesis and Antioxidant Properties of Novel N-Methyl-1,3,4-Thiadiazol-2-Amine and 4-Methyl-2H-1,2,4-Triazole-3(4H)-Thione Derivatives of Benzimidazole Class Bioorg. Med. Chem., 16 (2008) 4294-4303.
  • Dhanya S., Arun M.I., Prakash S., et al. 6-[3-(4-Fluorophenyl)-1H-pyrazol-4-yl]-3-[(2-naphthyloxy)methyl][1,2,4]triazolo[3,4-b][1,3,4]thiadiazole as a potent antioxidant and an anticancer agent induces growth inhibition followed by apoptosis in HepG2 cells. Arabian Journal of Chemistry, 3 (2010) 211-217.
  • Cressier D., Prouillac C., Hernandez P., et al., Synthesis, Antioxidant Properties and Radioprotective Effects of New Benzothiazoles and Thiadiazoles. Bioorg. Med. Chem., 17 (2009) 5275-5284.
  • Prouillac C., Vicendo P., Garrigues J.C., Poteau R., Rima G., Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Rad Biol Med., , 46 (2009) 1139-1148.

Antioxidant and prooxidant activity of new 1,2-diols and thiadiazoles derivatives in Saccharomyces cerevisiae yeast cells

Year 2020, , 712 - 719, 30.09.2020
https://doi.org/10.17776/csj.764614

Abstract

The present research was undertaken to determine the effect of substituted 2,2'-[(2R,3R)-2,3-dihydroxy-1,4-dioxobutane-1,4-diyl]bis(N-R-hydrazine-1-carbothioamide and (1R,2R)-1,2-bis[5-(R-amino)-1,3,4-thiadiazole-2-yl]ethane-1,2-diols on the antioxidant status of the yeast Saccharomyces cerevisiae cells. This cell serves a good eukaryotic model system for the study of molecular mechanisms of oxidative stress. The Saccharomyces cerevisiae yeast cells were treated a series of 1,2-diols and thiadiazoles compounds and the malondialdehyde (MDA) and antioxidant vitamins (A, E, C) levels in the medium were measured by HPLC-UV. In the comparison done among groups, the MDA which is an indicator of lipid peroxidation and Vitamin E concentrations were showed statistically changed in the samples. Exposure of yeaset cells to L9 showed an increase in MDA and decrease in vitamin E levels but L2 and L8 showed decrease in MDA and increase in vitamin E levels. The results showed that compounds L9 caused a considerable oxidative stress and L2 and L8 have antioxidant activity.

References

  • Yang D., An B., Wei W., Tian L., Huang B., Wang H. Coppercatalyzed domino synthesis of nitrogen heterocycle-fused benzoimidazole and 1,2,4- benzothiadiazine 1,1-dioxide derivatives, A C S Comb Sci., 17 (2015) 113–119.
  • Iizawa, Y., et al. Therapeutic effect of cefozopran (SCE-2787), a new parenteral cephalosporin, against experimental infections in mice. Antimicrobial Agents and Chemotherapy 37 (1993) 100-105.
  • Oruc, E.E., et al. 1,3,4-thiadiazole derivatives. Synthesis, structure elucidation, and structure-antituberculosis activity relation- ship investigation. Journal of Medicinal Chemistry. 47 (2004) 6760-6767.
  • Foroumadi, A., et al. Antituberculosis agents VIII. Synthesis and in vitro antimycobacterial activity of alkyl alpha-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetates. Farmaco. 58 (2003) 1073-1076.
  • Kamal M.D., et al. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorganic and Medicinal Chemistry. 14 (2006) 3672–3680.
  • Mullick P., et al. Thiadiazole derivatives as potential anticonvulsant agents. Bulletin of the Korean Chemical Society. 32 (2011) 1011-1016.
  • Clerici, F., et al. Synthesis of 2-amino-5-sulfanyl-1,3,4-thiadiazole derivatives and evaluation of their antidepressant and anxi-olytic activity. Journal of Medicinal Chemistry. 44 (2001) 931-936.
  • Hasui,T., et al. Identification of benzoxazin-3-one derivatives as novel, potent, and selective nonsteroidal mineralocorticoid receptor antagonists. Journal of Medicinal Chemistry 54 (2011) 8616-8631.
  • Zheng, K. B., et al. Synthesis and antitumor activity of N1-acetylamino-(5-alkyl/aryl- 1,3,4-thiadiazole-2-yl)-5-fluorouracil deriva- tives. Chinese Chemical Letters. 19 (2008) 1281-1284.
  • [Chen, C.J., et al. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2sulfonyl-1,3,4-thiadiazole and 5-(3,4,5- trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorganic& Medicinal Chemistry. 15 (2007) 3981-3989.
  • Suzuki, F., Kawakami, I., Yamamoto, S., Kosai, Y. Japan Kokai, 7776432 1977; Chem. Abstr., 88, (1978) 100351.
  • Abdel-Ramhan A. E., Mahmoud A. M., El-Sherief H.A., Gahatta A.G. Chem. Abstr. 98 (1983) 72012b.
  • Foerster H., Mues V., Baasner B., Hagemann H., Eue I., Schmidt R. EuropeanPatent,60426 1981; Chem. Abstr. (1983) 72107m.
  • Tiwari N., Chaturvedi B., Nizamuddin A. ynthesis and fungicidal activities of some 2-aryloxymethyl-1,3,4-thiadiazolo[2,3,-b]-quinazolin-4-one and 2-aryloxymethyl-5-substituted-1,3,4-thiadiazolo[3,2,-a]-1,3,5-triazine-7-thiones. Indian J. Chem., 28 (1989) 200-202.
  • Singh H., Yadav L.D.S., Agri. Biol. Chem., 40 (1976) 759-764; (b) Chaaban I., Oji O.O.J. Indian Chem Soc., 61 (1984) 523-525; (c) Mohsen A., Omer M.E., Aboulwafa O.M.J. Heterocycl. Chem., 21 (1984) 1415-1418; (d) Hiremath S.P., Birador J.S., Kudari S.M.J. Indian Chem. Soc., 61 (1984) 74-76.
  • Rao A. V. R., Bose D.S., Gurjar M.K., Ravindranatran T. Tetrahedron, 45 (1989) 70317040; (b) Seydenpenn J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis, John Wiley: New York, (1995); (c) Wright A.E., Schafer M., Midland S., Munnecke D.E., Sims J.J. Tetrahedron Lett., 30 (1989) 5699-5702.
  • Kolb H.C., Sharpless K.B., A simplified procedure for the stereospecific transformation of 1,2-diols into epoxides. Tetrahedron, 48 (1992) 10515-10530.
  • Lohray B.B., Ahuja J.R., J. Chem. Soc. (1991) 95-97; (b) Nicolaou K.C., Huang X., Snyder S.A., Rao P.B., Bela M., Reddy M.V. Angew. Chem. Int. 41 (2002) 834.
  • Parida S., Dordick J.S.J. Am. Chem. Soc., 113 (1991) 2253-2259; (b) Nelson W.L., Wennerstrom J.E., Sankar S.R.J. Org. Chem., 42 (1977) 1006-1012; (c) Bian chi D., Bosetti A., Cesti P., Golini P. Tetrahedron Lett., 33 (1992) 3231-3234.
  • Kurina-Sanz M., Bisogno F.R., Lavandera I., Orden A.A., Gotor V., Promiscuous substrate binding explains the enzymatic stereo- and regiocontrolled synthesis of enantiopure hydroxy ketones and diols. Adv. Synth. Catal., 351 (2009) 1842– 1848.
  • Supuran C.T., Scozzafava A., Carbonic anhydrase inhibitors. Curr Med Chem Immunol Endocrinol Metab Agents. 1 (2001) 61–97.
  • Singh, N., Rajini, P. S., Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85 (2004) 611.
  • Prior, R. L., Wu, X., Schaich, K., Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 53 (2005) 4290.
  • Uchida, K., Role of Reactive Aldehyde in Cardiovascular Diseases. Free Radical Biol. Med. 28 (2000) 1685.
  • [25] Cadenas, E., Davies, K. J. A., Mitochondrial Free Radical Generation, Oxidative Stress, and Aging. Free Radical Biol. Med. 29 (2000) 222. Offeing, B.M., Martelli, S.,. Steochemistry and Antitumour Activity of Platinium Metal Complexes of 2- Acetypyridine Thiosemicarbazones. Transition Metal Chemistry., 22 (1997) 263-269.
  • Karatepe A., (1r, 2r)-etan-1,2 diol tiyadiyazol türevlerinin sentezi, karekterizasyonu ve biyolojik özellikleri. Doktora tezi, Bingöl, 2020.
  • Karatepe, M., Simultaneous Determination of Ascorbic Acid and Free Malondialdehyde in Human Serum by HPLC/UV. LC-GC North America. 22 (2004) 362-5.
  • Catignani, G.L., Simultancous Determination of Retinol and α-Tocopherol in Serum of Plazma by Liquid Chromatography, Clin. Chem., 2914 (1983) 708-712.
  • Almeida, G.M., Thomazellab, D.P.T., Pereira, G.A.G., Monteiro G., Heterologous expression of an alternative oxidase from Moniliophthora perniciosa in Saccharomyces cerevisiae: Antioxidant function and in vivo platform for the study of new drugs against witches’ broom disease. Fungal Genetics and Biology, 126 (2019) 50–55.
  • Yildirim A., Mavi A., Kara A.A., Determination of antioxidant and antimicrobial activities of Rumexcrispus L. extracts,J. Agri. Food. Chem. 49 (2001) 4083.
  • Nordberg, J., Arner, E.S.J., , Reactive Oxygen Species, Antioxidants and The Mammalian Thioredoxin System, Free Rad. Biol. and Med., 31(11) (2001) 1287-1317.
  • Maccarrone, M (Maccarrone, M); Catani, MV (Catani, MV); Iraci, S (Iraci, S); Melino, G (Melino, G); Agro, AF (Agro, AF) A survey of reactive oxygen species and their role in dermatology. J. of the Eu. Academy of Der. and Ven. 8 (1997) 185-202.
  • Morrow J.D., The isoprostanes: their quantification as an index of oxidant stress status in vivo. Drug Metab Rev. 32 (2000) 377-85.
  • Vaca, C.E., Wilhelm J., Ringdahl M. H., Interaction of lipid peroxidation products with DNA. A review. Mutation Res., 195 (1988) 137-149.
  • EnnamanyaJ.P., LavergnebJ.P., Reboudb G., Mode of action of bolesatine, a cytotoxic glycoprotein from Boletus satanas Lenz. Mechanistic approachesToxicolog, 100 (1995) 51-55.
  • Bird, R.P., Draper, H.H., Comperative Studieson Differant Methods of Malondialdehyde Determination. Methods in Enzymology., 105 (1984) 299-305.
  • Tomita M., Okuyama T., Kawai S.J., Determination of malonaldehyde in oxidized biological materials by high-performance liquid chromatography. Chromatogr. 31 (1990) 391-7.
  • Kus C., Kilcigil G.A., Ozbey S., Kaynak F.B., Kaya M., Coban T., Eke B.,C., Synthesis and Antioxidant Properties of Novel N-Methyl-1,3,4-Thiadiazol-2-Amine and 4-Methyl-2H-1,2,4-Triazole-3(4H)-Thione Derivatives of Benzimidazole Class Bioorg. Med. Chem., 16 (2008) 4294-4303.
  • Dhanya S., Arun M.I., Prakash S., et al. 6-[3-(4-Fluorophenyl)-1H-pyrazol-4-yl]-3-[(2-naphthyloxy)methyl][1,2,4]triazolo[3,4-b][1,3,4]thiadiazole as a potent antioxidant and an anticancer agent induces growth inhibition followed by apoptosis in HepG2 cells. Arabian Journal of Chemistry, 3 (2010) 211-217.
  • Cressier D., Prouillac C., Hernandez P., et al., Synthesis, Antioxidant Properties and Radioprotective Effects of New Benzothiazoles and Thiadiazoles. Bioorg. Med. Chem., 17 (2009) 5275-5284.
  • Prouillac C., Vicendo P., Garrigues J.C., Poteau R., Rima G., Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Rad Biol Med., , 46 (2009) 1139-1148.
There are 41 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Arzu Karatepe

Ahmet Çetin 0000-0003-4662-7370

Publication Date September 30, 2020
Submission Date July 6, 2020
Acceptance Date August 25, 2020
Published in Issue Year 2020

Cite

APA Karatepe, A., & Çetin, A. (2020). Antioxidant and prooxidant activity of new 1,2-diols and thiadiazoles derivatives in Saccharomyces cerevisiae yeast cells. Cumhuriyet Science Journal, 41(3), 712-719. https://doi.org/10.17776/csj.764614