Research Article
BibTex RIS Cite
Year 2020, , 699 - 705, 30.09.2020
https://doi.org/10.17776/csj.747296

Abstract

References

  • Frensley, W. R. , VLSI Electronics Microstructure Science, Chapter Heterostructure and Quantum Well Physics, 24 (1994) 1-24.
  • Lim, H., Yoon, S. I., Kim, G., Jang A.R., Shin, H. S., Stacking of two –dimensional materials in lateral and vertical directions, Chem. Mater., 26 (2014) 4891-4903.
  • Withers, F., et al.,Light-emitting diodes by band-structure engineering in van der Walls hetetostructures, Nat. Mater., 14 (2015) 301-306.
  • S. Paul, J. B. Roy, and P. K. Basu, Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs, J. Appl. Phys., 69 (1991) 827-829.
  • Pearsall, T. P. and Hirtz, J. P., The carrier mobilities in Ga0.47In0.53as grown by organo-mettalic CVD and liquid-phase epitaxy, J. Cryst, Growth, 54 (1981) 127-131.
  • Pearsall, T. , IEEE Xplore - Ga0.47In0.53As: A ternary semiconductor for photodetector applications, IEEE Journal of Quantum Electronics, 16 (1980) 709-720.
  • Razeghi, M., Hirtz, J. P., Ziemelis, D., Delalande, C., Etienne, B. and Voos, M., Growth of Ga0.47In0.53As‐InP quantum wells by low pressure metalorganic chemical vapor deposition, Appl. Phys. Lett., 43 (1983) 585-587.
  • M. Razeghi, J. Nagle and C. Weisbuch, Gallium Arsenide and Related Compounds, 1985 (Inst. Phys. ConJ Ser. 74) 319.
  • Pearsall, T.P., Bisaro, R., Ansel, R. and Merenda, P., The growth of GaxIn1−xAs on (100) InP by liquid‐phase epitaxy, Appl. Phys. Lett., 32 (1978) 497-499.
  • Pearsall P. and Papuchon, M., The Ga0.47In0.53As homojunction photodiode A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm, Appl. Phys. Lett., 33 (1978) 640-642.
  • Goldberg, Y. A. and Shmidt, N. M. Gallium Indium Arsenide, in Handbook Series on Semiconductor Parameters, M. Levinshtein, S. Rumayantsev, and M. S. Shur,(Eds.) 2, 62, World Scientific, Singapore (1999).
  • A. V., Thathachary, N., Agrawal, L. Liu, S. Datta, Electron Transport in Multigate InxGa1–x As Nanowire FETs: From Diffusive to Ballistic Regimes at Room Temperature” , Nano Lett., 14 (2) (2014) 626-633.
  • Peter, A. J. , Gnanasekar, K. , Navaneethakrishnan, K. , Binding energy of impurity states in a parabolic quantum dot in a strong magnetic field, Phys. Stat. Sol. (b), 242 (2005) 2480-2488.
  • Kasapoğlu, E. The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1 − xAlxAs double quantum well under the external fields, Phys. Lett., A 373 (2008) 140-143.
  • Ozturk, O. , Ozturk E. , Elagoz S. , Electronic properties of double GaAlAs/GaAs and GaInAs/GaAs quantum wells as dependent on well width, Cumhuriyet Sci.J., 40 (2019) 471-476.
  • Elagoz, S., Karki, H.D., Baser, P., Sokmen I. , The magnetoexciton binding energy dependency on aluminium concentration in cylindrical quantum wires, Superlatt. and Microstruct., 45 (2009) 506-513.
  • P Başer, I Altuntas, S Elagoz, The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well, Superlattice Microst., 92 (2016) 210-216.
  • Villamil, P., Beltran, C., Montenegr N. P., Magnetoexciton binding energies in a quantum wire, J. Phys.: Condens. Matter., 13 (2001) 4143-4153.
  • Gang, L. Spiros, V. B., Bajaj, K. K., Exciton binding energy in a quantum wire in the presence of a magnetic field, J. Appl. Phys., 77 (1995) 1097-1105.
  • Baghramyan, H. M., Barseghyan, M. G., Kirakosyan,A. A., Effects of hydrostatic pressure and temperature on interband optical transitions in InAs/GaAs vertically coupled double quantum dots, J. Phys. Conf. Ser., 350 (2012) 012017 1-6.
  • Bastard, G. Hydrogenic impurity states in a quantum well: A simple model”, Phys. Rev. B., 24 (1981) 4714-4722.
  • Balandin, A. and Bandyopadhyay, S., Excitons in a quantum wire subjected to a magnetic field, Phys. Rev. B, 52 (1995) 8312-8316.
  • Baser, P., Karki, H. D., Demir, I., Elagoz, S., The hydrostatic pressure and temperature effects on the binding energy of magnetoexcitons in cylindrical quantum well wires, Superlatt. Microstruct, 63 (2013) 100-109.
  • Elagoz, S., Uslu, O., Baser, P., Çift Parabolik Kuşatma Altında Kuantum Sistemi Elektronik Enerji Düzeyleri, Marmara University Journal of Science and Technology, 20 (2008) 1-12 .
  • Başer P., Elagoz, S., The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in lattice matched InP/ In0.53Ga0.47As / InP square quantum well, Superlattice Microst, 102 (2017) 173-179.

Pressure and temperature effects on magnetoelectric band energies in GaAs / InxGa1-xAs cylindrical quantum wires

Year 2020, , 699 - 705, 30.09.2020
https://doi.org/10.17776/csj.747296

Abstract

Low-dimensional systems, consisting of GaAs / InGaAs heterostructures, have attracted considerable attention due to their many applications in optoelectronic and microelectronic devices. In the present work, the electron and the heavy-hole ground state energy in an InGaAs/GaAs cylindrical quantum well wires (CQWWs) is investigated with the consideration of geometrical confinement. The ground state energy was calculated as a function of hydrostatic pressure and temperature. Under the constant pressure and at a certain magnetic field value, while the ground state energy of the electron and the hole decreases depending on the temperature, it is observed that the energy increases as the hydrostatic pressure increases under the constant temperature. These calculations are interpreted with graphics.

References

  • Frensley, W. R. , VLSI Electronics Microstructure Science, Chapter Heterostructure and Quantum Well Physics, 24 (1994) 1-24.
  • Lim, H., Yoon, S. I., Kim, G., Jang A.R., Shin, H. S., Stacking of two –dimensional materials in lateral and vertical directions, Chem. Mater., 26 (2014) 4891-4903.
  • Withers, F., et al.,Light-emitting diodes by band-structure engineering in van der Walls hetetostructures, Nat. Mater., 14 (2015) 301-306.
  • S. Paul, J. B. Roy, and P. K. Basu, Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs, J. Appl. Phys., 69 (1991) 827-829.
  • Pearsall, T. P. and Hirtz, J. P., The carrier mobilities in Ga0.47In0.53as grown by organo-mettalic CVD and liquid-phase epitaxy, J. Cryst, Growth, 54 (1981) 127-131.
  • Pearsall, T. , IEEE Xplore - Ga0.47In0.53As: A ternary semiconductor for photodetector applications, IEEE Journal of Quantum Electronics, 16 (1980) 709-720.
  • Razeghi, M., Hirtz, J. P., Ziemelis, D., Delalande, C., Etienne, B. and Voos, M., Growth of Ga0.47In0.53As‐InP quantum wells by low pressure metalorganic chemical vapor deposition, Appl. Phys. Lett., 43 (1983) 585-587.
  • M. Razeghi, J. Nagle and C. Weisbuch, Gallium Arsenide and Related Compounds, 1985 (Inst. Phys. ConJ Ser. 74) 319.
  • Pearsall, T.P., Bisaro, R., Ansel, R. and Merenda, P., The growth of GaxIn1−xAs on (100) InP by liquid‐phase epitaxy, Appl. Phys. Lett., 32 (1978) 497-499.
  • Pearsall P. and Papuchon, M., The Ga0.47In0.53As homojunction photodiode A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm, Appl. Phys. Lett., 33 (1978) 640-642.
  • Goldberg, Y. A. and Shmidt, N. M. Gallium Indium Arsenide, in Handbook Series on Semiconductor Parameters, M. Levinshtein, S. Rumayantsev, and M. S. Shur,(Eds.) 2, 62, World Scientific, Singapore (1999).
  • A. V., Thathachary, N., Agrawal, L. Liu, S. Datta, Electron Transport in Multigate InxGa1–x As Nanowire FETs: From Diffusive to Ballistic Regimes at Room Temperature” , Nano Lett., 14 (2) (2014) 626-633.
  • Peter, A. J. , Gnanasekar, K. , Navaneethakrishnan, K. , Binding energy of impurity states in a parabolic quantum dot in a strong magnetic field, Phys. Stat. Sol. (b), 242 (2005) 2480-2488.
  • Kasapoğlu, E. The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1 − xAlxAs double quantum well under the external fields, Phys. Lett., A 373 (2008) 140-143.
  • Ozturk, O. , Ozturk E. , Elagoz S. , Electronic properties of double GaAlAs/GaAs and GaInAs/GaAs quantum wells as dependent on well width, Cumhuriyet Sci.J., 40 (2019) 471-476.
  • Elagoz, S., Karki, H.D., Baser, P., Sokmen I. , The magnetoexciton binding energy dependency on aluminium concentration in cylindrical quantum wires, Superlatt. and Microstruct., 45 (2009) 506-513.
  • P Başer, I Altuntas, S Elagoz, The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well, Superlattice Microst., 92 (2016) 210-216.
  • Villamil, P., Beltran, C., Montenegr N. P., Magnetoexciton binding energies in a quantum wire, J. Phys.: Condens. Matter., 13 (2001) 4143-4153.
  • Gang, L. Spiros, V. B., Bajaj, K. K., Exciton binding energy in a quantum wire in the presence of a magnetic field, J. Appl. Phys., 77 (1995) 1097-1105.
  • Baghramyan, H. M., Barseghyan, M. G., Kirakosyan,A. A., Effects of hydrostatic pressure and temperature on interband optical transitions in InAs/GaAs vertically coupled double quantum dots, J. Phys. Conf. Ser., 350 (2012) 012017 1-6.
  • Bastard, G. Hydrogenic impurity states in a quantum well: A simple model”, Phys. Rev. B., 24 (1981) 4714-4722.
  • Balandin, A. and Bandyopadhyay, S., Excitons in a quantum wire subjected to a magnetic field, Phys. Rev. B, 52 (1995) 8312-8316.
  • Baser, P., Karki, H. D., Demir, I., Elagoz, S., The hydrostatic pressure and temperature effects on the binding energy of magnetoexcitons in cylindrical quantum well wires, Superlatt. Microstruct, 63 (2013) 100-109.
  • Elagoz, S., Uslu, O., Baser, P., Çift Parabolik Kuşatma Altında Kuantum Sistemi Elektronik Enerji Düzeyleri, Marmara University Journal of Science and Technology, 20 (2008) 1-12 .
  • Başer P., Elagoz, S., The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in lattice matched InP/ In0.53Ga0.47As / InP square quantum well, Superlattice Microst, 102 (2017) 173-179.
There are 25 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Pınar Başer 0000-0003-0396-0210

Publication Date September 30, 2020
Submission Date June 2, 2020
Acceptance Date August 5, 2020
Published in Issue Year 2020

Cite

APA Başer, P. (2020). Pressure and temperature effects on magnetoelectric band energies in GaAs / InxGa1-xAs cylindrical quantum wires. Cumhuriyet Science Journal, 41(3), 699-705. https://doi.org/10.17776/csj.747296