Research Article
BibTex RIS Cite
Year 2020, , 976 - 986, 29.12.2020
https://doi.org/10.17776/csj.712985

Abstract

References

  • [1] Kaur P., Singh D. and Singh T., Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des., 307 (2016) 364–376.
  • [2] Lakshminarayana G. et al., Vibrational, thermal features, and photon attenuation coefficients evaluation for TeO2-B2O3-BaO-ZnO-Na2O-Er2O3-Pr6O11 glasses as gamma-rays shielding materials, J. Non. Cryst. Solids, 481 (2018) 568–578.
  • [3] Issa S. A. M., Sayyed M. I. and Kurudirek M., Study of gamma radiation shielding properties of ZnO−TeO2 glasses, Bull. Mater. Sci., 40 (2017) 841–857.
  • [4] Lakshminarayana G. et al., Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications, J. Non. Cryst. Solids, 471 (2017) 222–237.
  • [5] Tijani S. A. and Al-Hadeethi Y., The influence of TeO2 and Bi2O3 on the shielding ability of lead-free transparent bismuth tellurite glass at low gamma energy range, Ceram. Int., 45 (2019) 23572–23577.
  • [6] Dong M. G. et al., Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code, J. Non. Cryst. Solids, 468 (2017) 12–16.
  • [7] Kaur P., Singh K. J., Thakur S., Singh P., and Bajwa B. S., Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 206 (2019) 367–377.
  • [8] Wani A. L., Ara A., and J. Usmani A., Lead toxicity: A review, Interdiscip. Toxicol., 8 (2015) 55–64.
  • [9] Verma S., Sanghi S. K., and Amritphale S. S., Development of Advanced, Non-toxic, X-ray Radiation Shielding Glass Possessing Barium, Boron Substituted Kornerupine Crystallites in the Glassy Matrix, J. Inorg. Organomet. Polym. Mater., 28 (2018) 35–49.
  • [10] Tijani S. A. et al., Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies, J. Alloys Compd., 741 (2018) 293–299.
  • [11] Hulbert S. M. and Carlson K. A., Is lead dust within nuclear medicine departments a hazard to pediatric patients?, J. Nucl. Med. Technol., 37 (2009) 170–172.
  • [12] Millstone E. and Russell J., Lead toxicity and public health policy, J. R. Soc. Health, 115 (1995) 347–350.
  • [13] Oto B., Gür A., Kaçal M. R., Doǧan B. and Arasoglu A., Photon attenuation properties of some concretes containing barite and colemanite in different rates, Ann. Nucl. Energy, 51 (2013) 120–124.
  • [14] Zorla E. et al., Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron, Nucl. Eng. Des., 313 (2017) 306–318.
  • [15] Yilmaz E., Baltas H., Kiris E., Ustabas I., Cevik U., and El-Khayatt A. M., Gamma ray and neutron shielding properties of some concrete materials, Ann. Nucl. Energy, 38 (2011) 2204–2212.
  • [16] Pomaro B., A Review on Radiation Damage in Concrete for Nuclear Facilities: From Experiments to Modeling, Model. Simul. Eng., 2016 (2016).
  • [17] Horszczaruk E., Sikora P., and Zaporowski P., Mechanical properties of shielding concrete with magnetite aggregate subjected to high temperature, Procedia Eng., 108 (2015) 39–46.
  • [18] Lee C. M., Lee Y. H., and Lee K. J., Cracking effect on gamma-ray shielding performance in concrete structure, Prog. Nucl. Energy, 49 (2007) 303–312.
  • [19] Shelby James E, Introduction to Glass Science and Technology Chapter 1,. 2. ed., 2006, 1–6.
  • [20] Al-Hadeethi Y. and Sayyed M. I., Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code, Ceram. Int., 45 (2019) 24858–24864.
  • [21] Singh V. P. et al., Gamma-ray and neutron shielding efficiency of Pb-free gadolinium-based glasses, Nucl. Sci. Tech. 27:103 (2016).
  • [22] Singh K. J., Kaur S. and Kaundal R. S., Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems, Radiat. Phys. Chem., 96 (2014) 153–157.
  • [23] Kaewkhao J., Pokaipisit A. and Limsuwan P., Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO, J. Nucl. Mater., 399 (2010) 38–40.
  • [24] Askin A., Dal M., Investigation of The Gamma Ray Shielding Behaviour of (90-x)TeO2- xMoO3-10ZnO Glass System Using Geant4 Simulation Code and WinXCOM Database, Cumhur. Sci. J., 40 (2019) 742-752.
  • [25] Kirdsiri K., Kaewkhao J., Pokaipisit A., Chewpraditkul W. and Limsuwan P., Gamma-rays shielding properties of xPbO:(100-x)B2O3 glasses system at 662 keV, Ann. Nucl. Energy, 36 (2009) 1360–1365.
  • [26] Singh N., Singh K. J., Singh K. and Singh H., Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 225 (2004) 305–309.
  • [27] Kaewjaeng S., Kaewkhao J., Limsuwan P. and Maghanemi U., Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO- Na2O glasses system, Procedia Eng., 32 (2012) 1080–1086.
  • [28] Waly E. S. A., Fusco M. A., and Bourham M. A., Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy, 96 (2016) 26–30.
  • [29] Sayyed M. I., Elmahroug Y., Elbashir B. O. and Issa S. A. M., Gamma-ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci. Mater. Electron., 28 (2017) 4064–4074.
  • [30] Mauro J. C., Philip C. S., Vaughn D. J., and Pambianchi M. S., Glass science in the United States: Current status and future directions, Int. J. Appl. Glas. Sci., 5 (2014) 2–15.
  • [31] Sayyed M. I., Lakshminarayana G., Dong M. G., Ersundu M. Ç., Ersundu A. E. and Kityk I. V., Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses, Radiat. Phys. Chem., 145 (2018) 26–33.
  • [32] Kumar V., Pandey O. P., and Singh K., Structural and optical properties of barium borosilicate glasses, Phys. B. Condens. Matter., 405 (2010) 204–207.
  • [33] Cetinkaya Colak S., Akyuz I., and Atay F., On the dual role of ZnO in zinc-borate glasses, J. Non. Cryst. Solids, 432 (2016) 406–412.
  • [34] Saeed A., Elbashar Y. H., and El Shazly R. M., Optical properties of high density barium borate glass for gamma ray shielding applications, Opt. Quantum Electron., 48 (2016) 1–10.
  • [35] Kurtuluş R. and Kavas T., An Investigation on Usability of Waste Container Glass with Gd2O3 and La2O3 Addition in Radiation Shielding Applications, AKU J. Sci. Eng., 19 (2019) 219-224.
  • [36] Saudi H. A., Lead Phosphate Glass Containing Boron and Lithium Oxides as a Shielding Material for Neutron- and Gamma Radiation, Appl. Math. Phys., 1 (2013) 143–146.
  • [37] El-Mallawany R. and Sayyed M. I., Comparative shielding properties of some tellurite glasses: Part 1, Phys. B. Condens. Matter., 539 (2017) 133–140.
  • [38] El-Mallawany R., Sayyed M. I., and Dong M. G., Comparative shielding properties of some tellurite glasses: Part 2, J. Non. Cryst. Solids, 474 (2017) 16–23.
  • [39] Sayyed M. I., Çelikbilek Ersundu M., Ersundu A. E., Lakshminarayana G. and Kostka P., Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO: Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses, Radiat. Phys. Chem., 144 (2018) 419–425.
  • [40] NIST XCOM: Element/Compound/Mixture. Available at: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.
  • [41] ILIS Company BatchMaker Software. Available at: https://www.ilis.de/en/batchmaker.html.
  • [42] Fluegel A., Glass viscosity based on a glabal statistical modeling approach, Glas. Technol. Eur. J. Glas. Sci. Technol. A, 48 (2007)13–30.
  • [43] Fluegel A., Varshneya A. K., Earl D. A., Seward T. P., Oksoy D. and Street P., Improved composition-property relations in silicate glasses Part 1: Viscosity, Proceedings of the 106th Annual Meeting of the American Ceramic Society, Ceramic Transactions, 170 (2004) 129-143.
  • [44] El-Kameesy S. Y., El-Ghany S. A., El-Hakam Azooz M. A., and El-Gammam Y. A. A., Shielding Properties of Lead Zinc Borate Glasses, World J. Condens. Matter Phys., 03 (2013) 198-202.
  • [45] Singh T. and Singh P. S., Partial as Well as Total Photon Interaction Effective Atomic Numbers for Some Concretes, J. Nucl. Physics, Mater. Sci. Radiat. Appl., 1 (2013) 97-105.
  • [46] Kaewjang S., Maghanemi U., Kothan S., Kim H. J., Limkitjaroenporn P. and Kaewkhao J., New gadolinium based glasses for gamma-rays shielding materials, Nucl. Eng. Des., 280 (2015) 21–26.
  • [47] Radiation Shielding Glasses for Industrial Applications: SCHOTT Advanced Optics. Available at: https://www.schott.com/advanced_optics/english/products/optical-materials/special-materials/radiation-shielding-glasses/index.html.
  • [48] C. Lakatos, L. C, J. LG, and S. B, Viscosity-Temperature Relations in the Glass System SiO2-Al2O3-Na2O-K2O-CaO-MgO in the Composition Range of Technical Glasses, Glas. Technol.,13 (1972).

Gamma Ray Shielding Characteristics of Borosilicate Glass Containing ZnO from 0.015 to 10 MeV

Year 2020, , 976 - 986, 29.12.2020
https://doi.org/10.17776/csj.712985

Abstract

In this study, the glass system of xSiO2-20B2O3-10Na2O-4MgO-8CaO-3Al2O3-(55-x)ZnO where x= 0, 5, 10, 15, 20 and 25 wt.% were investigated via the WinXCom program. Radiation shielding characteristics of linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half-value layer (HVL) and mean free path (MFP) parameters of 6 different glass systems were calculated in the energy range of 0.015-10 MeV. Further, a comparison for HVL values between heavy-weight concrete materials & commercial glasses and our findings was carried out. Furthermore, some important glass property calculations and viscosity-temperature curves were calculated with BatchMaker software. According to the WinXCom calculations, it was found out that LAC and MAC values increased while HVL and MFP values decreased with increasing ZnO content. Particularly, 25 wt.% of ZnO (sample-5) addition ensured to obtain by far the best radiation shielding characteristics at higher photon energies. As a result of the comparison, it was strikingly seen that our glass samples have promising results when compared with heavyweight concrete materials and commercial products. Interestingly, sample-5 can compete even with RS323 G18 (33 wt% PbO content) in higher photon energies despite its low-density value. Moreover, it was determined that our glass systems were found to have glass formation ability with satisfactory glass properties according to BatchMaker estimate calculations.

References

  • [1] Kaur P., Singh D. and Singh T., Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des., 307 (2016) 364–376.
  • [2] Lakshminarayana G. et al., Vibrational, thermal features, and photon attenuation coefficients evaluation for TeO2-B2O3-BaO-ZnO-Na2O-Er2O3-Pr6O11 glasses as gamma-rays shielding materials, J. Non. Cryst. Solids, 481 (2018) 568–578.
  • [3] Issa S. A. M., Sayyed M. I. and Kurudirek M., Study of gamma radiation shielding properties of ZnO−TeO2 glasses, Bull. Mater. Sci., 40 (2017) 841–857.
  • [4] Lakshminarayana G. et al., Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications, J. Non. Cryst. Solids, 471 (2017) 222–237.
  • [5] Tijani S. A. and Al-Hadeethi Y., The influence of TeO2 and Bi2O3 on the shielding ability of lead-free transparent bismuth tellurite glass at low gamma energy range, Ceram. Int., 45 (2019) 23572–23577.
  • [6] Dong M. G. et al., Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code, J. Non. Cryst. Solids, 468 (2017) 12–16.
  • [7] Kaur P., Singh K. J., Thakur S., Singh P., and Bajwa B. S., Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 206 (2019) 367–377.
  • [8] Wani A. L., Ara A., and J. Usmani A., Lead toxicity: A review, Interdiscip. Toxicol., 8 (2015) 55–64.
  • [9] Verma S., Sanghi S. K., and Amritphale S. S., Development of Advanced, Non-toxic, X-ray Radiation Shielding Glass Possessing Barium, Boron Substituted Kornerupine Crystallites in the Glassy Matrix, J. Inorg. Organomet. Polym. Mater., 28 (2018) 35–49.
  • [10] Tijani S. A. et al., Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies, J. Alloys Compd., 741 (2018) 293–299.
  • [11] Hulbert S. M. and Carlson K. A., Is lead dust within nuclear medicine departments a hazard to pediatric patients?, J. Nucl. Med. Technol., 37 (2009) 170–172.
  • [12] Millstone E. and Russell J., Lead toxicity and public health policy, J. R. Soc. Health, 115 (1995) 347–350.
  • [13] Oto B., Gür A., Kaçal M. R., Doǧan B. and Arasoglu A., Photon attenuation properties of some concretes containing barite and colemanite in different rates, Ann. Nucl. Energy, 51 (2013) 120–124.
  • [14] Zorla E. et al., Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron, Nucl. Eng. Des., 313 (2017) 306–318.
  • [15] Yilmaz E., Baltas H., Kiris E., Ustabas I., Cevik U., and El-Khayatt A. M., Gamma ray and neutron shielding properties of some concrete materials, Ann. Nucl. Energy, 38 (2011) 2204–2212.
  • [16] Pomaro B., A Review on Radiation Damage in Concrete for Nuclear Facilities: From Experiments to Modeling, Model. Simul. Eng., 2016 (2016).
  • [17] Horszczaruk E., Sikora P., and Zaporowski P., Mechanical properties of shielding concrete with magnetite aggregate subjected to high temperature, Procedia Eng., 108 (2015) 39–46.
  • [18] Lee C. M., Lee Y. H., and Lee K. J., Cracking effect on gamma-ray shielding performance in concrete structure, Prog. Nucl. Energy, 49 (2007) 303–312.
  • [19] Shelby James E, Introduction to Glass Science and Technology Chapter 1,. 2. ed., 2006, 1–6.
  • [20] Al-Hadeethi Y. and Sayyed M. I., Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code, Ceram. Int., 45 (2019) 24858–24864.
  • [21] Singh V. P. et al., Gamma-ray and neutron shielding efficiency of Pb-free gadolinium-based glasses, Nucl. Sci. Tech. 27:103 (2016).
  • [22] Singh K. J., Kaur S. and Kaundal R. S., Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems, Radiat. Phys. Chem., 96 (2014) 153–157.
  • [23] Kaewkhao J., Pokaipisit A. and Limsuwan P., Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO, J. Nucl. Mater., 399 (2010) 38–40.
  • [24] Askin A., Dal M., Investigation of The Gamma Ray Shielding Behaviour of (90-x)TeO2- xMoO3-10ZnO Glass System Using Geant4 Simulation Code and WinXCOM Database, Cumhur. Sci. J., 40 (2019) 742-752.
  • [25] Kirdsiri K., Kaewkhao J., Pokaipisit A., Chewpraditkul W. and Limsuwan P., Gamma-rays shielding properties of xPbO:(100-x)B2O3 glasses system at 662 keV, Ann. Nucl. Energy, 36 (2009) 1360–1365.
  • [26] Singh N., Singh K. J., Singh K. and Singh H., Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 225 (2004) 305–309.
  • [27] Kaewjaeng S., Kaewkhao J., Limsuwan P. and Maghanemi U., Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO- Na2O glasses system, Procedia Eng., 32 (2012) 1080–1086.
  • [28] Waly E. S. A., Fusco M. A., and Bourham M. A., Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy, 96 (2016) 26–30.
  • [29] Sayyed M. I., Elmahroug Y., Elbashir B. O. and Issa S. A. M., Gamma-ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci. Mater. Electron., 28 (2017) 4064–4074.
  • [30] Mauro J. C., Philip C. S., Vaughn D. J., and Pambianchi M. S., Glass science in the United States: Current status and future directions, Int. J. Appl. Glas. Sci., 5 (2014) 2–15.
  • [31] Sayyed M. I., Lakshminarayana G., Dong M. G., Ersundu M. Ç., Ersundu A. E. and Kityk I. V., Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses, Radiat. Phys. Chem., 145 (2018) 26–33.
  • [32] Kumar V., Pandey O. P., and Singh K., Structural and optical properties of barium borosilicate glasses, Phys. B. Condens. Matter., 405 (2010) 204–207.
  • [33] Cetinkaya Colak S., Akyuz I., and Atay F., On the dual role of ZnO in zinc-borate glasses, J. Non. Cryst. Solids, 432 (2016) 406–412.
  • [34] Saeed A., Elbashar Y. H., and El Shazly R. M., Optical properties of high density barium borate glass for gamma ray shielding applications, Opt. Quantum Electron., 48 (2016) 1–10.
  • [35] Kurtuluş R. and Kavas T., An Investigation on Usability of Waste Container Glass with Gd2O3 and La2O3 Addition in Radiation Shielding Applications, AKU J. Sci. Eng., 19 (2019) 219-224.
  • [36] Saudi H. A., Lead Phosphate Glass Containing Boron and Lithium Oxides as a Shielding Material for Neutron- and Gamma Radiation, Appl. Math. Phys., 1 (2013) 143–146.
  • [37] El-Mallawany R. and Sayyed M. I., Comparative shielding properties of some tellurite glasses: Part 1, Phys. B. Condens. Matter., 539 (2017) 133–140.
  • [38] El-Mallawany R., Sayyed M. I., and Dong M. G., Comparative shielding properties of some tellurite glasses: Part 2, J. Non. Cryst. Solids, 474 (2017) 16–23.
  • [39] Sayyed M. I., Çelikbilek Ersundu M., Ersundu A. E., Lakshminarayana G. and Kostka P., Investigation of radiation shielding properties for MeO-PbCl2-TeO2 (MeO: Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses, Radiat. Phys. Chem., 144 (2018) 419–425.
  • [40] NIST XCOM: Element/Compound/Mixture. Available at: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.
  • [41] ILIS Company BatchMaker Software. Available at: https://www.ilis.de/en/batchmaker.html.
  • [42] Fluegel A., Glass viscosity based on a glabal statistical modeling approach, Glas. Technol. Eur. J. Glas. Sci. Technol. A, 48 (2007)13–30.
  • [43] Fluegel A., Varshneya A. K., Earl D. A., Seward T. P., Oksoy D. and Street P., Improved composition-property relations in silicate glasses Part 1: Viscosity, Proceedings of the 106th Annual Meeting of the American Ceramic Society, Ceramic Transactions, 170 (2004) 129-143.
  • [44] El-Kameesy S. Y., El-Ghany S. A., El-Hakam Azooz M. A., and El-Gammam Y. A. A., Shielding Properties of Lead Zinc Borate Glasses, World J. Condens. Matter Phys., 03 (2013) 198-202.
  • [45] Singh T. and Singh P. S., Partial as Well as Total Photon Interaction Effective Atomic Numbers for Some Concretes, J. Nucl. Physics, Mater. Sci. Radiat. Appl., 1 (2013) 97-105.
  • [46] Kaewjang S., Maghanemi U., Kothan S., Kim H. J., Limkitjaroenporn P. and Kaewkhao J., New gadolinium based glasses for gamma-rays shielding materials, Nucl. Eng. Des., 280 (2015) 21–26.
  • [47] Radiation Shielding Glasses for Industrial Applications: SCHOTT Advanced Optics. Available at: https://www.schott.com/advanced_optics/english/products/optical-materials/special-materials/radiation-shielding-glasses/index.html.
  • [48] C. Lakatos, L. C, J. LG, and S. B, Viscosity-Temperature Relations in the Glass System SiO2-Al2O3-Na2O-K2O-CaO-MgO in the Composition Range of Technical Glasses, Glas. Technol.,13 (1972).
There are 48 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Engineering Sciences
Authors

Recep Kurtuluş 0000-0002-3206-9278

Taner Kavas 0000-0003-1070-8451

Publication Date December 29, 2020
Submission Date April 1, 2020
Acceptance Date December 24, 2020
Published in Issue Year 2020

Cite

APA Kurtuluş, R., & Kavas, T. (2020). Gamma Ray Shielding Characteristics of Borosilicate Glass Containing ZnO from 0.015 to 10 MeV. Cumhuriyet Science Journal, 41(4), 976-986. https://doi.org/10.17776/csj.712985

Cited By