Research Article
BibTex RIS Cite
Year 2021, , 358 - 363, 30.06.2021
https://doi.org/10.17776/csj.692511

Abstract

Project Number

FEFGAP/2018-0001

References

  • [1] Miller B. G., Clean coal engineering technology, Coal as fuel: past, present, and future, 1st ed. Boston: Butterworth-Heinemann, (2011) 1-51.
  • [2] Zou C., Zhao Q., Zhang G., Xiong B., Energy revolution: From a fossil energy era to a new energy era, Natural Gas Industry B, 3(1) (2016) 1-11
  • [3] Staffell I., Scamman D., Abad A.V., Balcombe P., Dodds P.E., Ekins P., Shah N., Ward K.R., The role of hydrogen and fuel cells in the global energy system, Royal Society of Chemistry-Energy Environ. Sci., 12(1) (2019) 463-491.
  • [4] Harting C., Jörissen L., Kerres J., Lehnert W., Scholta J., Polymer electrolyte membrane fuel cells, Materials for Fuel Cells, Woodhead Publishing Series in Electronic and Optical Materials, 8(3) (2008), 101-184.
  • [5] Panwar N.L, Kaushik S.C., Kothari S., Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513–1524.
  • [6] Fahmy F.H., Abdel-Rehim Z.S., Hydrogen gas production an dutilization as electricity using a renewable energy source. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 21(7) (1999) 629–641.
  • [7] Bauen A., Foradini F., Hart D., Fuel Cell-Based Renewable Energy Supply: Sustainable Energy for Isolated and Island Communities. In: Afgan N.H., Carvalho M.G., (Eds). New and Renewable Technologies for Sustainable Development. 1st ed. Boston: Springer, (2002) 421-428 .
  • [8] Bauen A., Hart D., Assessment of the environmental benefits of transport and stationary fuel cells, Journal of Power Sources, 86 (1-2) (2000) 482-494.
  • [9] Wang Y., Chen K.S., Mishler M., Cho S.C., Adrohera X.A., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 88(4) (2011) 981-1007.
  • [10] Peighambardoust S.J., Rowshanzamir S., Amjadia M., Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, 35 (17) (2010) 9349-9384
  • [11] Elmacı G., Ertürk A.S, Sevim M., Metin Ö., MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction, Journal of Hydrogen Energy 44 (33) (2019) 17995-18006.
  • [12] Elmacı G., Frey C.E., Kurz P., Zümreoğlu-Karan B., Water oxidation catalysis by using nano-manganese ferrite supported 1D-(tunnelled), 2D-(layered) and 3D-(spinel) manganese oxides, Journal of Materials Chemistry A 4 (22) (2016) 8812-8821.
  • [13] Elmacı G., Frey C.E., Kurz P., Zümreoğlu-Karan B., Water Oxidation Catalysis by Birnessite@Iron Oxide Core–Shell Nanocomposites, Inorganic Chemistry, 54 (6) (2015) 2734-2741.
  • [14] Elmaci G., Microwave Assisted Green Synthesis of Ag/AgO Nanocatalyst as An Efficient OER Catalyst in Neutral Media, Hittite Journal of Science & Engineering, 7 (1) (2020) 61-65.
  • [15] Djilali N., Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities, Energy 32 (2007) 269–280.
  • [16] Najafi N., Dipenta D., Bencherif K., Sorine M., Modeling and simulation of a reformate supplied PEM fuel cell stack, application to fault detection, HAL Applications and Tools of Automatic Control, 21 (1) (2007) 1-18.
  • [17] Kone J.P, Zhang X., Yan Y., Hu G., Ahmadi G., CFD modeling and simulation of PEM fuel cell using OpenFOAM, Energy Procedia, 145 (1) (2018) 64-69.
  • [18] Yuan W., Tang Y., Pan M.Q., Li Z.T., Tang B., Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renewable Energy, 35 (2010) 656-666.
  • [19] Salam A.A., Mohamed A., Hannan M.A., Modeling and Simulation of a PEM Fuel Cell System Under Various Temperature Conditions, 2nd WSEAS/IASME International Conference on Renewable Energy Sources (Res'08) Corfu, Greece, October 2008, 26-28.
  • [20] Djilali N., Lu D., Influence of Heat Transfer on Gas and Water Transport in Fuel Cells, Int. J. Therm. Sci., 41 (1) (2002) 29-40.
  • [21] Musser J., Wang C.Y., Heat Transfer in a Fuel Cell Engine, Proceedings of NHTC'00, 34th National Heat Transfer Conference, Pittsburgh, 2000, 1-7.
  • [22] Verbrugge M.W., Hill R.F., Transport Phenomena in Perfluorosulfonic Acid Membranes During the Passage of Current, J. Electrochem. Soc., 137 (4) (1990) 1131-1138.
  • [23] Springer T.E., Zawodzinski T.A., Gottesfeld S., Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc., 138 (8) (1991) 2334-2342.
  • [24] Fuller T.F., Newman J., Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells, J. Electrochem. Soc., 1993, 140 (5) (1993) 1218-1225.
  • [25] Nguyen T.V., White R.E., A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells, J. Electrochem. Soc., 140 (8) (1993) 2178-2186.
  • [26] Wohr M., Bowlin K., Schnurnberger W., Fischer M., Neubrand W., Eigenberger G., Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation, Int. J. Hydrogen Energy, 23 (2), (1998) 213-218.

Simulation study for 3D dynamic characteristics of voltage losses in PEM fuel cell

Year 2021, , 358 - 363, 30.06.2021
https://doi.org/10.17776/csj.692511

Abstract

Fuel cells, providing an advanced alternative energy source, are devices that can convert chemical energy into electrical energy. Modeling of a fuel cell provides improvements to the design of the fuel cells as well as providing cheaper, better and more efficient fuel cells. Three basic voltage losses occur in the fuel cell: activation polarization, ohmic polarization and concentration polarization. In this study, simulation of voltage losses in PEM (proton exchange membrane) fuel cells was performed by using Matlab@Simulink program. Polarization and power curves were obtained for different operating temperatures by considering these losses.

Supporting Institution

ADIYAMAN ÜNİVERSİTESİ

Project Number

FEFGAP/2018-0001

Thanks

This study was supported by the project performed in Adiyaman University Scientific Research Fund with the grant number: FEFGAP/2018-0001

References

  • [1] Miller B. G., Clean coal engineering technology, Coal as fuel: past, present, and future, 1st ed. Boston: Butterworth-Heinemann, (2011) 1-51.
  • [2] Zou C., Zhao Q., Zhang G., Xiong B., Energy revolution: From a fossil energy era to a new energy era, Natural Gas Industry B, 3(1) (2016) 1-11
  • [3] Staffell I., Scamman D., Abad A.V., Balcombe P., Dodds P.E., Ekins P., Shah N., Ward K.R., The role of hydrogen and fuel cells in the global energy system, Royal Society of Chemistry-Energy Environ. Sci., 12(1) (2019) 463-491.
  • [4] Harting C., Jörissen L., Kerres J., Lehnert W., Scholta J., Polymer electrolyte membrane fuel cells, Materials for Fuel Cells, Woodhead Publishing Series in Electronic and Optical Materials, 8(3) (2008), 101-184.
  • [5] Panwar N.L, Kaushik S.C., Kothari S., Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513–1524.
  • [6] Fahmy F.H., Abdel-Rehim Z.S., Hydrogen gas production an dutilization as electricity using a renewable energy source. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 21(7) (1999) 629–641.
  • [7] Bauen A., Foradini F., Hart D., Fuel Cell-Based Renewable Energy Supply: Sustainable Energy for Isolated and Island Communities. In: Afgan N.H., Carvalho M.G., (Eds). New and Renewable Technologies for Sustainable Development. 1st ed. Boston: Springer, (2002) 421-428 .
  • [8] Bauen A., Hart D., Assessment of the environmental benefits of transport and stationary fuel cells, Journal of Power Sources, 86 (1-2) (2000) 482-494.
  • [9] Wang Y., Chen K.S., Mishler M., Cho S.C., Adrohera X.A., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 88(4) (2011) 981-1007.
  • [10] Peighambardoust S.J., Rowshanzamir S., Amjadia M., Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy, 35 (17) (2010) 9349-9384
  • [11] Elmacı G., Ertürk A.S, Sevim M., Metin Ö., MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction, Journal of Hydrogen Energy 44 (33) (2019) 17995-18006.
  • [12] Elmacı G., Frey C.E., Kurz P., Zümreoğlu-Karan B., Water oxidation catalysis by using nano-manganese ferrite supported 1D-(tunnelled), 2D-(layered) and 3D-(spinel) manganese oxides, Journal of Materials Chemistry A 4 (22) (2016) 8812-8821.
  • [13] Elmacı G., Frey C.E., Kurz P., Zümreoğlu-Karan B., Water Oxidation Catalysis by Birnessite@Iron Oxide Core–Shell Nanocomposites, Inorganic Chemistry, 54 (6) (2015) 2734-2741.
  • [14] Elmaci G., Microwave Assisted Green Synthesis of Ag/AgO Nanocatalyst as An Efficient OER Catalyst in Neutral Media, Hittite Journal of Science & Engineering, 7 (1) (2020) 61-65.
  • [15] Djilali N., Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities, Energy 32 (2007) 269–280.
  • [16] Najafi N., Dipenta D., Bencherif K., Sorine M., Modeling and simulation of a reformate supplied PEM fuel cell stack, application to fault detection, HAL Applications and Tools of Automatic Control, 21 (1) (2007) 1-18.
  • [17] Kone J.P, Zhang X., Yan Y., Hu G., Ahmadi G., CFD modeling and simulation of PEM fuel cell using OpenFOAM, Energy Procedia, 145 (1) (2018) 64-69.
  • [18] Yuan W., Tang Y., Pan M.Q., Li Z.T., Tang B., Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renewable Energy, 35 (2010) 656-666.
  • [19] Salam A.A., Mohamed A., Hannan M.A., Modeling and Simulation of a PEM Fuel Cell System Under Various Temperature Conditions, 2nd WSEAS/IASME International Conference on Renewable Energy Sources (Res'08) Corfu, Greece, October 2008, 26-28.
  • [20] Djilali N., Lu D., Influence of Heat Transfer on Gas and Water Transport in Fuel Cells, Int. J. Therm. Sci., 41 (1) (2002) 29-40.
  • [21] Musser J., Wang C.Y., Heat Transfer in a Fuel Cell Engine, Proceedings of NHTC'00, 34th National Heat Transfer Conference, Pittsburgh, 2000, 1-7.
  • [22] Verbrugge M.W., Hill R.F., Transport Phenomena in Perfluorosulfonic Acid Membranes During the Passage of Current, J. Electrochem. Soc., 137 (4) (1990) 1131-1138.
  • [23] Springer T.E., Zawodzinski T.A., Gottesfeld S., Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc., 138 (8) (1991) 2334-2342.
  • [24] Fuller T.F., Newman J., Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells, J. Electrochem. Soc., 1993, 140 (5) (1993) 1218-1225.
  • [25] Nguyen T.V., White R.E., A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells, J. Electrochem. Soc., 140 (8) (1993) 2178-2186.
  • [26] Wohr M., Bowlin K., Schnurnberger W., Fischer M., Neubrand W., Eigenberger G., Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation, Int. J. Hydrogen Energy, 23 (2), (1998) 213-218.
There are 26 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Abdurrahman Baytar 0000-0002-4859-7104

Deniz Sunar Çerçi 0000-0002-5412-4688

Salim Çerçi 0000-0002-8702-6152

Project Number FEFGAP/2018-0001
Publication Date June 30, 2021
Submission Date February 21, 2020
Acceptance Date January 30, 2021
Published in Issue Year 2021

Cite

APA Baytar, A., Sunar Çerçi, D., & Çerçi, S. (2021). Simulation study for 3D dynamic characteristics of voltage losses in PEM fuel cell. Cumhuriyet Science Journal, 42(2), 358-363. https://doi.org/10.17776/csj.692511