Effect of deformation, particle-hole and particle-particle interaction on Gamow-Teller transitions of 76Ge
Year 2020,
, 212 - 227, 22.03.2020
Şadiye Çakmak
Abstract
Gamow-Teller
(GT) transitions for 76Ge using QRPA methods in this article are
calculated, which play an essential role in the supernovae. Three different
QRPA models are used to the GT strength distributions. QRPA models namely
single quasi-particle (sqp), Pyatov Method (PM) and the Schematic Model (SM).
Gamow-Teller distribution, ΣB(GT)-, the centroid of energy, the width of energy and ISR are calculated by using
these models. The effect
of particle-particle interaction on spherical nuclei and deformed nuclei on Gamow-Teller transitions is wanted to show.
Deformed Woods-Saxon potential
is used in calculations of Single-particle energies and wave functions. The results are also compared with previous
theoretical calculations and measured
strength distributions wherever available. It is expected that the current study of GT features would be helpful and may
guide to a better knowledge
of the presupernova progression of massive stars.
Supporting Institution
Eskisehir Osmangazi Üniversitesi BAP
Thanks
I would like to acknowledge the support of the research grant provided by the BAP Project No. 2018-2117.
References
- [1] Fuller G.M., Fowler W.A. and Newman M.J., Stellar weak-interaction rates for sd-shell nuclei. I. Nuclear matrix element systematics with application to 26Al and selected nuclei of importance to the supernova problem, Astrophys. J. Suppl. Ser., 42 (1980) 447-473
- [2] Aufderheide M.B., Fushiki I., Woosley S.E., Stanford E. and Hartmann D.H., Search for important weak interaction nuclei in presupernova evolution, Astrophys. J. Suppl. Ser., 91 (1994) 389–417.
- [3] Nabi J.-Un., Klapdor-Kleingrothaus H.V., Microscopic calculations of weak interaction rates of nuclei in stellar environment for A = 18 to 100, Eur. Phys. J. A, 5 (1999) 337–339.
- [4] Langanke K., Martínez-Pinedo G., Shell-model calculations of stellar weak interaction rates. II. Weak rates for nuclei in the mass range A = 45–65 in supernovae environments, Nucl. Phys. A, 673 (2000) 481-508.
- [5] Pyatov N.I., Salamov D.I., Conservation laws and collective excitations in nuclei, Nucleonica, 22 (1977) 1–127.
- [6] Civitarese O., Hess P.D., Hirsch J.G. and Reboiro M., Spontaneous and dynamical breaking of mean field symmetries in the proton neutron quasi particle random phase approximation, Phys. Rev. C, 59 (1998) 194-199.
- [7] Magierski P.,Wyss R., Self consistent effective interactions and symmetry restoration, Phys. Lett. B, 468 (2000) 54-60.
- [8] Kulliev A.A., Akkaya R., Ilhan M., Guliev E., Salamov C., Selvi S., Rotational invariant model of the states with Kπ = 1+ and their contribution to the scissors mode, Int. J. Mod. Phys. E, 9 (2000) 249-261.
- [9] Babacan T., Salamov D.I., Kucukbursa A., Gamow–Teller 1+ states in 208Bi, Phys. Rev. C, 71 (2005) 037303.
- [10] Babacan T., Salamov D.I., Kucukbursa A., The effect of the pairing interaction on the energies of isobar resonance in 112–124Sb and isospin admixture in 100–124Sn isotopes, J. Phys. G, 30 (2004) 759–770.
- [11] Babacan T., Salamov D.I., Kucukbursa A., The investigation of the log(ft) values for the allowed Gamow–Teller transitions of some deformed nuclei, Math. Comput. Appl., 10 (2005) 359–368.
- [12] Cakmak, N. The study of Charge Exchange collective Excitations in Odd mass nuclei, Ph.D thesis. (2008) 1-72.
- [13] Cole A.L., Akimune H., Austin Sam M., Bazin D., van den Berg A.M., Berg G.P.A., Brown J., Daito I., Fujita Y., Fujiwara M., Gupta S., Hara K., Harakeh M.N., Janecte J., Kawabata T., Nakamura T., Roberts D.A., Sherrill B.M., Steiner M., Ueno H., Zegers R.G.T., Measurement of the Gamow–Teller strength distribution in 58Co via the 58Ni(t, 3He) reaction at 115 MeV/nucleon, Phys. Rev. C, 74 (2006) 034333.
- [14] Fujita Y., et al., Gamow-Teller transitions from 58Ni to discrete states of 58Cu, Eur. Phys. J. A, 13 (2002) 411-418.
- [15] Fujita Y., et al., Isospin structure of Jπ=1+ states in 58Ni and 58Cu studied by 58Ni(p,p′) and 58Ni(3He,t)58Cu measurements, Phys. Rev. C, 75 (2007) 034310.
- [16] El-Kateb S., Alford W.P., Abegg R., Azuma R.E., Brown B.A., Celler A., Frekers D., Häusser O., Helmer R., Henderson R.S., Hicks K.H., Jeppesen R., King J.D., Raywood K., Shut, G.G., Spicer B.M., Trudel A., Vetterli M., Yen, S., Spinisospin strength distributions for fp shell nuclei: results for the 55Mn(n,p), 56Fe(n,p), and 58Ni(n,p) reactions at 198 MeV, Phys. Rev. C, 49 (1994) 3128.
- [17] Sasano M., et al., Gamow-Teller Transition Strengths from 56Ni, Phys. Rev. Lett., 107 (2011) 202501.
- [18] Poves A., Snchez-Solano J., Caurier E., Nowacki F., Shell model study of the isobaric chains A = 50, A = 51 and A = 52, Nucl. Phys. A, 694 (2001)157–198.
- [19] Richter W.A., Merwe M.G., Van Der Julies R.E., Brown B.A., New effective interactions for the 0f 1p shell, Nucl. Phys. A, 253 (1991) 325–353.
- [20] Suzuki T., Honma M., Higashiyama K., Yoshida T., Kajino T., Otsuka T., Umeda H., Nomoto K., Neutrino-induced reactions on 56Fe and 56Ni, and production of 55Mn in population III stars, Phys. Rev. C, 79 (2009) 061603.
- [21] Caurier C., Langanke K., Martinez-Pinedo G., Nowacki F., Shell-model calculations of stellar weak interaction rates. I. Gamow-Teller distributions and spectra of nuclei in the mass range A = 45–65, Nucl. Phys. A, 653 (1999) 439-452.
- [22] Sarriguren P., Moya de Guerra E., Alvarez-Rodriguez R., Gamow–Teller strength distributions in Fe and Ni, Nucl. Phys. A, 716 (2003) 230-244.
- [23] Nabi, J.-Un., Klapdor-Kleingrothaus, H.V., Microscopic calculations of stellar weak interaction rates and energy losses for fp- and fpgshell nuclei, At. Data Nucl. Data Tables, 88 (2004) 237–476.
- [24] Nabi, J.-Un., Klapdor-Kleingrothaus, H.V., 1999. Weak interaction rates of sd-shell nuclei in stellar environments calculated in the protonneutron quasiparticle random-phase approximation, At. Data Nucl. Data Tables, 71 (1999) 149–335.
- [25] Ha Eunja, Cheoun Myung- Ki and Kim K.S., Deformation effects on the Gamow-teller transitions in 76Ge and 76Se by using the deformed Quasi-Particle Random-Phase Approximation, Journal of the Korean Physical Society, 67 (2015) 1142-1149.
- [26] Sarriguren P., et al., Gamow-Teller strength distributions in 76Ge and 76Se from deformed quasiparticle random-phase approximation, Phys. Rev. C, 67 (2003) 044313.
- [27] Ha Eunja and Cheoun Myung-Ki, Gamow–Teller strength distributions in 76Ge, 76,82Se, and 90,92Zr by the deformed proton–neutron QRPA, Nuclear Physics A, 934 (2015) 73-109.
- [28] Nabi Jameel-Un and Ishfaq Mavra, Gamow–Teller strength distributions and stellar weak-interaction rates for 76Ge and 82Se using the deformed pn-QRPA model, Astrophys. and Space Sci., 361, (2016) 1-10.
- [29] Madey R., Flanders B.S., Anderson B.D., Baldwin A.R., Watson J.W., Low-lying structures in the Gamow-Teller strength functions for the double-beta-decaying nuclei 76Ge, 82Se, 128Te, and 130Te, Phys. Rev. C, 40 (1989) 540-552.
- [30] Sarriguren P., Moya de Guerra E., Escuderos A., and Carrizo A.C., β decay and shape isomerism in 74Kr, Nucl. Phys. A, 635 (1998) 55-85.
- [31] Raman S., Nestor C. W., Tikkanen Jr. and P., Transition Probability from the Ground to the First-Excıted 2+ State of Even–Even Nuclides, At. Data Nucl. Data Tables, 78 (2001) 1-128.
- [32] Simkovic F., Pacearescu L. and Faessler A., Two-neutrino double beta decay of 76Ge within deformed QRPA, Nucl. Phys. A, 733 (2004) 321-350.
- [33] Yousef M. S., Rodin V., Faessler A. and Simkovic F., Two-neutrino double β decay of deformed nuclei within the quasiparticle random-phase approximation with a realistic interaction, Phys. Rev. C, 79 (2009) 014314.
- [34] Salamov D.I., Kucukbursa A., Maras I., Aygor H.A., Babacan T., Bircan H., Calculation of the log(ft) values for the allowed Gamow–Teller transitions in deformed nuclei using the basis of Woods–Saxon wave functions, Acta Phys. Slov. 53 (2003) 307–319.
- [35] Cakmak, S., Nabi, J.-U., Babacan, T., Selam, C., Study of Gamow– Teller transitions in isotopes of titanium within the quasi particle random phase approximation, Astrophys. Space Sci., 352 (2014) 645–663.
- [36] Salamov, D.I. et al., Proceedings of Fifth Conference on Nuclear and Particle Physics (NUPPAC 05), vol. 361, Cairo, August 2006.
- [37] Ikeda, K.I., Collective Excitation of Unlike Pair States in Heavier Nuclei. Prog. Theor. Phys., 31 (1964) 434–451.
- [38] Cakmak, N., Unlu, S., Selam, C., Gamow–Teller 1+ states in 112–124Sb isotopes, Pramana J. Phys, 75 (2010) 649–663.
- [39] Selam, C., Babacan, T., Bircan, H., Aygor, H.A., Kucukbursa, A., Maras, I., The investigation of the log(ft) values for the allowed Gamow–Teller transitions of some deformed nuclei, Math. Comput. Appl,. 9 (2004) 79–90.
- [40] Cerkaski M., Dudek J., Szymanski Z., Andersson C. G., Leander G., Aberg S., Nilsson S. G. and Ragnarsson I., Search for the yrast traps in neutron deficient rare earth nuclei, Phys. Lett. B, 70 (1977) 9-13; Dudek J., Nazarewicz W., Faessler A., Theoretical analysis of the single-particle states in the secondary minima of fissioning nuclei, Nucl. Phys. A, 412 (1984) 61-91.
- [41] Moller P., et al., Nuclear Ground-State Masses and Deformations, Atomic Data and Nuclear Tables, 59 (1995) 185-381.