Research Article
BibTex RIS Cite

Proton Therapy Simulations by GATE in the Treatment of Non-Small Cell Lung Cancer (NSCLC)

Year 2019, , 909 - 916, 31.12.2019
https://doi.org/10.17776/csj.640079

Abstract

 Lung cancer is one of the leading causes of cancer
- related deaths. Recently, radiotherapy is being used extensively for the
treatment of patients suffering from cancer. Proton therapy is a very suitable
form of radiation therapy for tumors that occur in the vicinity of critical
tissues such as lung, due to the unique characteristics of the protons used in
the treatment. In this study, a geometry model with lung, heart, tumor and bone
structures in a water phantom is modeled with the Monte Carlo simulation tool
vGATE, version of 7.2. With this simulation, the accumulated dose are
calculated for each organ. 

References

  • [1] Globocan 2018 Graph production: IARC, World Health Organization. Adress: http://gco.iarc.fr/today. Retrieved September 23, 2019.
  • [2] Peh W.C.G., History of the discovry of x ray, part I- Rontgen and his discovery of x ray, Singapore Med. J., 36 (1995) 437-441.
  • [3] Khan M.F., Gibbons J.P., (2014), Khan’s The Physics of Radiation Therapy (Fifth Edition), Lippin- cott Williams & Wilkins, Philadelphia, USA: LWW.com
  • [4] Wilson R.R., Radiological use of fast protons, Radiology, 47 (1946) 487-491.
  • [5] Lawrence J.H., Tobias C.A., Born J.L., Mccombs R.K., Roberts J.E., Anger H.O., Lowbeer B.V., Huggıns C.B., Pituitary irradiation with high energy proton beams: a preliminary report, Cancer Res., 18-2 (1958) 121-34.
  • [6] Gragoudas E., Li W., Goitein M., Lane A.M., Munzenrider J.E., Egan K.M., Evidence-based estimates of outcome in patients irradiated for intraocular melanoma, Arch Ophthalmol 10-12 (2002) 1665-71.
  • [7] Particle Therapy Co-Operative Group (PTCOG) - An organisation for those interested in proton, light ion and heavy charged particle radiotherapy. Adress:https://www.ptcog.ch/index.php/facilities-in-operatio. Retrieved September 30, 2019.
  • [8] Mesko S., Gomez D., Proton Therapy in Non-small Cell Lung Cancer, Curr. Treat. Options in Oncol., 19-12 (2018) 76. doi: https://doi.org/ 10.1007/s11864-018-0588-z.
  • [9] Cozzi L., Fogliata A., Lomax A., Bolsi A., A treatment planning comparison of 3D conformal therapy, intensity modulated photon therapy and proton therapy for treatment of advanced head and neck tumours, Radiother Oncol., 61-3 (2001) 287–297.
  • [10] Macdonald O.K., Kruse J.J., Miller J.M., Garces Y.I., Brown P.D., Miller R.C., Foote R.L., Proton beam radiotherapy versus three-dimensional conformal stereotactic body radiotherapy in primary peripheral, early-stage non-small-cell lung carcinoma: a comparative dosimetric analysis, Int J Radiation Oncol. Biol. Phys., 75-3 (2009) 950–958.
  • [11] Kadoya N., Obata Y., Kato T., Kagiya M., Nakamura T., Tomoda T., Takada T., Takayama K., Fuwa N., Dose-volume comparison of proton radiotherapy and stereotactic body radiotherapy for non-small cell lung cancer, Int J Radiat Oncol Biol Phys., 79 (2011) 1225–31.
  • [12] Roelofs E., Engelsman M., Rasch C., Persoon L., Quamhiyeh S., Ruysscher D.D., Verhaegen F., Pijls J.M., Lambin P., Rococo consortium, Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer, J Thorac Oncol., 7-1 (2012) 165–76. doi: 10.1097 / JTO.0b013e31823529fc.
  • [13] Paganetti H., Jiang H., Lee S.Y., Kooy H.M., Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility, Med. Phys., 31-7 (2004) 2107–2118. doi: https://doi.org/10.1118/1.1762792.
  • [14] Van Goethem M.J., Van Der Meer R., Reist H.W., Schippers J.M., Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line, Phys. Med. Biol., 7-54 (2009) 5831–5846. doi:https://doi.org/10.1088/0031-9155/54/ 19/011.
  • [15] Aso T., Kimura A., Tanaka S., Yoshida H., Kanematsu N., Sasaki T., Akagi T., Verification of the Dose Distributions With GEANT4 Simulation for Proton Therapy, IEEE Transactions on Nuclear Science, 52-4 (2005) 896–901. doi: https://doi.org/10. 1109/tns.2005.852697.
  • [16] Allison J., Amako K., Araujo H., Apotolakis J., Geant4 developments and applications, IEEE Trans.Nucl.Sci., 53-1 (2006) 270-278.
  • [17] Clasie B., Depauw N., Fransen M., Gom C., Panahandeh H.R., Seco J., et al.: Golden beam data for proton pencil-beam scanning. Phys. Med. Biol. 57-5 (2012). doi:https://doi.org/10.1088/ 0031-9155/57/5/1147.
  • [18] Users Guide V7.2 From GATE collaborative documentation wiki. Adress: http://www.opengatecollaboration.org/sites/default/files/GATE-UsersGuideV7.2.pdf. Retrieved September 13, 2019.
  • [19] Agostinelli S., Allison J., Amako K. al, Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., GEANT4—a simulation toolkit, Nucl. instruments methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 506 (2003) 250–303.
  • [20] GEANT4 a simulation toolkit. Adress: https://geant4.web.cern.ch/. Retrieved: November 19, 2019.
  • [21] Tan H.Q., Phua J.H., Tan L., Ang K.W., Lee J., Bettiol A.A., Geant4 Simulation for Commissioning of Proton Therapy Centre, World Congress on Medical Physics and Biomedical Engineering 2018, IFMBE Proceedings, 68-1 (2018) 583-587. doi:https://doi.org/10.1007/978-981-10-9035-6_108.
  • [22] Cirrone G.A.P., Cuttone G., Nigro S.L., Guatelli S., Mascialino B., Pia M.G., Raffaele L., Russo G., Implementation of a New Monte Carlo GEANT4 Simulation Tool for the Development of a Proton Therapy Beam Line and Verification of the Related Dose Distributions, IEEE Transactions on Nuclear Science, 52-1 (2005) 262-265. doi:10.1109/TNS.2004.843140.
  • [23] Cirrone, G.A.P., Cuttone, G., D. Battaglia L., Calabbretta L., Celona F., Di R., Lojacono P., Maggiore M., Mongelli V., Nigro L.S., Piazza L.A.C., Patti V.I., Raffaele L., Re M., Rifuggiato D., Russo G.,Sabini M.G, Salamone V., Valastro L.M., A 62 MeV Proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN (CATANIA), IEEE Nuclear Science Symposium. Conference Record, 5 (2003) 3658-3662. doi:https://doi.org/10.1109/NSSMIC.2003.1352701.
  • [24] Gray H., Gray’s Anatom, 39th ed. Londo: Churchill; (2005) 997-1003.
  • [25] Kramer G.H., Capello K., Bearrs B., Lauzon A., Normandeau L., Linear dimensions and volumes of human lungs obtained from CT images. Health Phys., 102-4 (2012) 378-83. doi:10.1097/HP.0b013e31823a13f1.
  • [26] International Commission on Radiation Units and Measurement)(ICRU). Adress:https://icru.org/. Retrieved September 13, 2019.
  • [27] Rene B. and Fons R., ROOT An Object Oriented Data Analysis Framework, Proceedings AIHENP'96 Workshop, Lausanne, Nucl. Inst. & Meth. in Phys. Res. A., 389 (1997) 81-86.
  • [28] Rinecker Proton Therapy Center Third Annual Report Establishing Proton Cancer Therapy in Europe. Adress: https://www.rptc.de/en/information/latest-news/progress-reports/news-progress-reports-detail/rinecker-proton-therapy-center-third-annual-report-establishing-proton-cancer-therapy-in-europe.html. Retrieved September 10 (2019).
Year 2019, , 909 - 916, 31.12.2019
https://doi.org/10.17776/csj.640079

Abstract

References

  • [1] Globocan 2018 Graph production: IARC, World Health Organization. Adress: http://gco.iarc.fr/today. Retrieved September 23, 2019.
  • [2] Peh W.C.G., History of the discovry of x ray, part I- Rontgen and his discovery of x ray, Singapore Med. J., 36 (1995) 437-441.
  • [3] Khan M.F., Gibbons J.P., (2014), Khan’s The Physics of Radiation Therapy (Fifth Edition), Lippin- cott Williams & Wilkins, Philadelphia, USA: LWW.com
  • [4] Wilson R.R., Radiological use of fast protons, Radiology, 47 (1946) 487-491.
  • [5] Lawrence J.H., Tobias C.A., Born J.L., Mccombs R.K., Roberts J.E., Anger H.O., Lowbeer B.V., Huggıns C.B., Pituitary irradiation with high energy proton beams: a preliminary report, Cancer Res., 18-2 (1958) 121-34.
  • [6] Gragoudas E., Li W., Goitein M., Lane A.M., Munzenrider J.E., Egan K.M., Evidence-based estimates of outcome in patients irradiated for intraocular melanoma, Arch Ophthalmol 10-12 (2002) 1665-71.
  • [7] Particle Therapy Co-Operative Group (PTCOG) - An organisation for those interested in proton, light ion and heavy charged particle radiotherapy. Adress:https://www.ptcog.ch/index.php/facilities-in-operatio. Retrieved September 30, 2019.
  • [8] Mesko S., Gomez D., Proton Therapy in Non-small Cell Lung Cancer, Curr. Treat. Options in Oncol., 19-12 (2018) 76. doi: https://doi.org/ 10.1007/s11864-018-0588-z.
  • [9] Cozzi L., Fogliata A., Lomax A., Bolsi A., A treatment planning comparison of 3D conformal therapy, intensity modulated photon therapy and proton therapy for treatment of advanced head and neck tumours, Radiother Oncol., 61-3 (2001) 287–297.
  • [10] Macdonald O.K., Kruse J.J., Miller J.M., Garces Y.I., Brown P.D., Miller R.C., Foote R.L., Proton beam radiotherapy versus three-dimensional conformal stereotactic body radiotherapy in primary peripheral, early-stage non-small-cell lung carcinoma: a comparative dosimetric analysis, Int J Radiation Oncol. Biol. Phys., 75-3 (2009) 950–958.
  • [11] Kadoya N., Obata Y., Kato T., Kagiya M., Nakamura T., Tomoda T., Takada T., Takayama K., Fuwa N., Dose-volume comparison of proton radiotherapy and stereotactic body radiotherapy for non-small cell lung cancer, Int J Radiat Oncol Biol Phys., 79 (2011) 1225–31.
  • [12] Roelofs E., Engelsman M., Rasch C., Persoon L., Quamhiyeh S., Ruysscher D.D., Verhaegen F., Pijls J.M., Lambin P., Rococo consortium, Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer, J Thorac Oncol., 7-1 (2012) 165–76. doi: 10.1097 / JTO.0b013e31823529fc.
  • [13] Paganetti H., Jiang H., Lee S.Y., Kooy H.M., Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility, Med. Phys., 31-7 (2004) 2107–2118. doi: https://doi.org/10.1118/1.1762792.
  • [14] Van Goethem M.J., Van Der Meer R., Reist H.W., Schippers J.M., Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line, Phys. Med. Biol., 7-54 (2009) 5831–5846. doi:https://doi.org/10.1088/0031-9155/54/ 19/011.
  • [15] Aso T., Kimura A., Tanaka S., Yoshida H., Kanematsu N., Sasaki T., Akagi T., Verification of the Dose Distributions With GEANT4 Simulation for Proton Therapy, IEEE Transactions on Nuclear Science, 52-4 (2005) 896–901. doi: https://doi.org/10. 1109/tns.2005.852697.
  • [16] Allison J., Amako K., Araujo H., Apotolakis J., Geant4 developments and applications, IEEE Trans.Nucl.Sci., 53-1 (2006) 270-278.
  • [17] Clasie B., Depauw N., Fransen M., Gom C., Panahandeh H.R., Seco J., et al.: Golden beam data for proton pencil-beam scanning. Phys. Med. Biol. 57-5 (2012). doi:https://doi.org/10.1088/ 0031-9155/57/5/1147.
  • [18] Users Guide V7.2 From GATE collaborative documentation wiki. Adress: http://www.opengatecollaboration.org/sites/default/files/GATE-UsersGuideV7.2.pdf. Retrieved September 13, 2019.
  • [19] Agostinelli S., Allison J., Amako K. al, Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., GEANT4—a simulation toolkit, Nucl. instruments methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 506 (2003) 250–303.
  • [20] GEANT4 a simulation toolkit. Adress: https://geant4.web.cern.ch/. Retrieved: November 19, 2019.
  • [21] Tan H.Q., Phua J.H., Tan L., Ang K.W., Lee J., Bettiol A.A., Geant4 Simulation for Commissioning of Proton Therapy Centre, World Congress on Medical Physics and Biomedical Engineering 2018, IFMBE Proceedings, 68-1 (2018) 583-587. doi:https://doi.org/10.1007/978-981-10-9035-6_108.
  • [22] Cirrone G.A.P., Cuttone G., Nigro S.L., Guatelli S., Mascialino B., Pia M.G., Raffaele L., Russo G., Implementation of a New Monte Carlo GEANT4 Simulation Tool for the Development of a Proton Therapy Beam Line and Verification of the Related Dose Distributions, IEEE Transactions on Nuclear Science, 52-1 (2005) 262-265. doi:10.1109/TNS.2004.843140.
  • [23] Cirrone, G.A.P., Cuttone, G., D. Battaglia L., Calabbretta L., Celona F., Di R., Lojacono P., Maggiore M., Mongelli V., Nigro L.S., Piazza L.A.C., Patti V.I., Raffaele L., Re M., Rifuggiato D., Russo G.,Sabini M.G, Salamone V., Valastro L.M., A 62 MeV Proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN (CATANIA), IEEE Nuclear Science Symposium. Conference Record, 5 (2003) 3658-3662. doi:https://doi.org/10.1109/NSSMIC.2003.1352701.
  • [24] Gray H., Gray’s Anatom, 39th ed. Londo: Churchill; (2005) 997-1003.
  • [25] Kramer G.H., Capello K., Bearrs B., Lauzon A., Normandeau L., Linear dimensions and volumes of human lungs obtained from CT images. Health Phys., 102-4 (2012) 378-83. doi:10.1097/HP.0b013e31823a13f1.
  • [26] International Commission on Radiation Units and Measurement)(ICRU). Adress:https://icru.org/. Retrieved September 13, 2019.
  • [27] Rene B. and Fons R., ROOT An Object Oriented Data Analysis Framework, Proceedings AIHENP'96 Workshop, Lausanne, Nucl. Inst. & Meth. in Phys. Res. A., 389 (1997) 81-86.
  • [28] Rinecker Proton Therapy Center Third Annual Report Establishing Proton Cancer Therapy in Europe. Adress: https://www.rptc.de/en/information/latest-news/progress-reports/news-progress-reports-detail/rinecker-proton-therapy-center-third-annual-report-establishing-proton-cancer-therapy-in-europe.html. Retrieved September 10 (2019).
There are 28 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Burcu Armutlu 0000-0001-8305-0932

İlknur Hoş 0000-0002-7678-1101

Publication Date December 31, 2019
Submission Date October 30, 2019
Acceptance Date November 22, 2019
Published in Issue Year 2019

Cite

APA Armutlu, B., & Hoş, İ. (2019). Proton Therapy Simulations by GATE in the Treatment of Non-Small Cell Lung Cancer (NSCLC). Cumhuriyet Science Journal, 40(4), 909-916. https://doi.org/10.17776/csj.640079