Research Article
BibTex RIS Cite
Year 2019, , 830 - 837, 31.12.2019
https://doi.org/10.17776/csj.585503

Abstract

References

  • [1] Ghorbani A., Esmaeilizadeh M., Pharmacological properties of Salvia officinalis and its components, J. Tradit. Complem. Med., 7(2017) 433-440.
  • [2] Durling N.E., Catchpole O.J., Grey J.B., Webby R.F., Mitchell K.A., Foo L.Y., Perry N.B., Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures, Food. Chem., 101(2007) 1417-1424.
  • [3] Ollanketo M., Peltoketo A., Hartonen K., Hiltunen R., Riekkola M.-L., Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Antioxidant activity of the extracts, Eur. Food. Res. Technol., 215(2002) 158-163.
  • [4] de Rijke E., Out P., Niessen W.M.A., Ariese F., Gooijer C., Brinkman U.A.T., Analytical separation and detection methods for flavonoids, J. Chromatogr. A, 1112(2006) 31-63.
  • [5] Lu Y., Foo L.Y., Flavonoid and phenolic glycosides from Salvia officinalis, Phytochemistry, 55(2000) 263-267.
  • [6] Havsteen B.H., The biochemistry and medical significance of the flavonoids, Pharmacol. Therapeut., 96(2002) 67-202.
  • [7] Formica M., Fusi V., Giorgi L., Micheloni M., New fluorescent chemosensors for metal ions in solution, Coordin. Chem. Rev., 256(2012) 170-192.
  • [8] Jeong Y., Yoon J., Recent progress on fluorescent chemosensors for metal ions, Inorg. Chim. Acta, 381(2012) 2-14.
  • [9] Affrose A., Parveen S.D.S., Kumar B.S., Pitchumani K., Selective sensing of silver ion using berberine, a naturally occurring plant alkaloid, Sensor. Actuat. B-Chem., 206(2015) 170-175.
  • [10] Yang S., Jiang W., Zhao F., Xu L., Xu Y., Gao B., Sun H., Du L., Tang Y., Cao F., A highly sensitive and selective fluorescent sensor for detection of copper ions based on natural Isorhamnetin from ginkgo leaves, Sensor. Actuat. B-Chem., 236(2016) 386-391.
  • [11] Gao S., Tan G., Yuan H., Xiao D., Choi M.M.F., A Simple fluorometric method using Chlorophyll A for determination of Hg2+ ion, Microchim. Acta, 153(2006) 159-162.
  • [12] Ahmad W., Rana N.F., Riaz S., Ahmad N.M., Hameed M., Naeem A., Tahir R., Chemical sensing of Benzo [a] pyrene using Corchorus depressus fluorescent flavonoids, Nat. Prod. Res., 32(2018) 968-971.
  • [13] Malešev D., Kuntić V., Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions, J. Serbian Chem. Soc., 72(2007) 921-939.
  • [14] Veličković D., Milenović D., Ristić M., Veljković V., Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem., 13(2006) 150-156.
  • [15] Putnik P., Kovačević D.B., Penić M., Fegeš M., Dragović-Uzelac V., Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification, Food Anal. Method., 2016;9:2385-94.
  • [16] Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic-Grujicic S, Stojanovic I., Gerothanassis I.P., Tzakos A.G., Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 136(2013) 120-129.
  • [17] Fernandez M.T., Mira M.L., Florencio M.H., Jennings K.R., Iron and copper chelation by flavonoids: An electrospray mass spectrometry study, J. Inorg. Biochem., 92(2002) 105-111.
  • [18] Kasprzak M.M., Erxleben A., Ochocki J., Properties and applications of flavonoid metal complexes, RSC Adv., 5(2015) 45853-45877.
  • [19] Samsonowicz M., Regulska E., Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes, Spectrochim. Acta A, 173(2017) 757-771.
  • [20] Özbek N., Alp H., Çelik G., Ak T., Çağılcı O.C., Yaylı N., Ocak U., Ocak M., A simple spectrofluorimetric method for iron determination with a chalcone-based Schiff base, J. Fluoresc. 27(2017) 635-641.
  • [21] Favaro G., Clementi C., Romani A., Vickackaite V., Acidichromism and ionochromism of luteolin and apigenin, the main components of the naturally occurring yellow weld: A spectrophotometric and fluorimetric study, J. Fluoresc., 17(2007) 707-714.
  • [22] Perez-Ruiz T., Martinez-Lozano C., Tomas V., Fenoll J., Spectrofluorometric determination of hesperidin by manual and flow-injection methods, Fresenius J. Anal. Chem., 364(1999) 279-283.
  • [23] Bi S., Yan L., Pang B., Wang Y., Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique, J. Lumin., 132(2012) 132-140.

On fluorescent sensing of metal ions using water extracts of Salvia officinalis

Year 2019, , 830 - 837, 31.12.2019
https://doi.org/10.17776/csj.585503

Abstract

Sensing of metal ions using fluorometric tools has wide applications in
chemical, biological and environmental analysis. Plant phytochemicals, like
flavonoids, exhibit intense fluorescence upon excitation by UV light. Leaves
sage (Salvia officinalis), which is
rich in polyphenolic and flavonoids compounds, were extracted using Soxhlet and
microwave-assisted extractors. The extraction methods led to variations in the
phytochemical composition of the extracts, which in turn affected their
interaction with metal ions. Despite the variations in the composition, both of
the extracts gave high fluorescence emissions when excited at 365 nm.
Variations in fluorescence emissions of the extracts were studied in upon
addition of each metal ion;  i.e., Li+,
Na+, K+, Cs+, Be2+, Mg2+,
Sr2+, Ba2+, Al3+, Tl3+, Ge4+,
Sn4+, Pb2+, Sb3+, Bi3+, Se4+,
Cu2+, Ag+, Zn2+, Cd2+, Ti4+,
Cr3+, Cr6+, Mo6+,  W6+, Mn2+, Fe3+,
Ni2+, Co2+ and Pd2+. When they were added into
the Soxhlet extract, some ions (Cr3+, Pb2+, Co2+)
induced intense fluorescence and some (Ge4+, Mg2+, K+,
Na+) ions quenched the fluorescence emission. As for
microwave-assisted extract, the addition of Sr2+, Mg2+
and Co2+ ions enhanced the fluorescence emission of the extract, but
Fe3+, Be2+ and Cs+ lowered the fluorescence
intensity. However, the results of the study should be considered as
introductory and further selectivity and sensitivity studies should be done for
each extract if they are used for sensing of metal ions. Yet, this study
demonstrated that sage extracts has a potential for fluorescent sensing of
certain metal ions.

References

  • [1] Ghorbani A., Esmaeilizadeh M., Pharmacological properties of Salvia officinalis and its components, J. Tradit. Complem. Med., 7(2017) 433-440.
  • [2] Durling N.E., Catchpole O.J., Grey J.B., Webby R.F., Mitchell K.A., Foo L.Y., Perry N.B., Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures, Food. Chem., 101(2007) 1417-1424.
  • [3] Ollanketo M., Peltoketo A., Hartonen K., Hiltunen R., Riekkola M.-L., Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Antioxidant activity of the extracts, Eur. Food. Res. Technol., 215(2002) 158-163.
  • [4] de Rijke E., Out P., Niessen W.M.A., Ariese F., Gooijer C., Brinkman U.A.T., Analytical separation and detection methods for flavonoids, J. Chromatogr. A, 1112(2006) 31-63.
  • [5] Lu Y., Foo L.Y., Flavonoid and phenolic glycosides from Salvia officinalis, Phytochemistry, 55(2000) 263-267.
  • [6] Havsteen B.H., The biochemistry and medical significance of the flavonoids, Pharmacol. Therapeut., 96(2002) 67-202.
  • [7] Formica M., Fusi V., Giorgi L., Micheloni M., New fluorescent chemosensors for metal ions in solution, Coordin. Chem. Rev., 256(2012) 170-192.
  • [8] Jeong Y., Yoon J., Recent progress on fluorescent chemosensors for metal ions, Inorg. Chim. Acta, 381(2012) 2-14.
  • [9] Affrose A., Parveen S.D.S., Kumar B.S., Pitchumani K., Selective sensing of silver ion using berberine, a naturally occurring plant alkaloid, Sensor. Actuat. B-Chem., 206(2015) 170-175.
  • [10] Yang S., Jiang W., Zhao F., Xu L., Xu Y., Gao B., Sun H., Du L., Tang Y., Cao F., A highly sensitive and selective fluorescent sensor for detection of copper ions based on natural Isorhamnetin from ginkgo leaves, Sensor. Actuat. B-Chem., 236(2016) 386-391.
  • [11] Gao S., Tan G., Yuan H., Xiao D., Choi M.M.F., A Simple fluorometric method using Chlorophyll A for determination of Hg2+ ion, Microchim. Acta, 153(2006) 159-162.
  • [12] Ahmad W., Rana N.F., Riaz S., Ahmad N.M., Hameed M., Naeem A., Tahir R., Chemical sensing of Benzo [a] pyrene using Corchorus depressus fluorescent flavonoids, Nat. Prod. Res., 32(2018) 968-971.
  • [13] Malešev D., Kuntić V., Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions, J. Serbian Chem. Soc., 72(2007) 921-939.
  • [14] Veličković D., Milenović D., Ristić M., Veljković V., Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem., 13(2006) 150-156.
  • [15] Putnik P., Kovačević D.B., Penić M., Fegeš M., Dragović-Uzelac V., Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification, Food Anal. Method., 2016;9:2385-94.
  • [16] Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic-Grujicic S, Stojanovic I., Gerothanassis I.P., Tzakos A.G., Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 136(2013) 120-129.
  • [17] Fernandez M.T., Mira M.L., Florencio M.H., Jennings K.R., Iron and copper chelation by flavonoids: An electrospray mass spectrometry study, J. Inorg. Biochem., 92(2002) 105-111.
  • [18] Kasprzak M.M., Erxleben A., Ochocki J., Properties and applications of flavonoid metal complexes, RSC Adv., 5(2015) 45853-45877.
  • [19] Samsonowicz M., Regulska E., Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes, Spectrochim. Acta A, 173(2017) 757-771.
  • [20] Özbek N., Alp H., Çelik G., Ak T., Çağılcı O.C., Yaylı N., Ocak U., Ocak M., A simple spectrofluorimetric method for iron determination with a chalcone-based Schiff base, J. Fluoresc. 27(2017) 635-641.
  • [21] Favaro G., Clementi C., Romani A., Vickackaite V., Acidichromism and ionochromism of luteolin and apigenin, the main components of the naturally occurring yellow weld: A spectrophotometric and fluorimetric study, J. Fluoresc., 17(2007) 707-714.
  • [22] Perez-Ruiz T., Martinez-Lozano C., Tomas V., Fenoll J., Spectrofluorometric determination of hesperidin by manual and flow-injection methods, Fresenius J. Anal. Chem., 364(1999) 279-283.
  • [23] Bi S., Yan L., Pang B., Wang Y., Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique, J. Lumin., 132(2012) 132-140.
There are 23 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

İdris Sargin 0000-0003-3785-9575

Publication Date December 31, 2019
Submission Date July 2, 2019
Acceptance Date November 14, 2019
Published in Issue Year 2019

Cite

APA Sargin, İ. (2019). On fluorescent sensing of metal ions using water extracts of Salvia officinalis. Cumhuriyet Science Journal, 40(4), 830-837. https://doi.org/10.17776/csj.585503