Research Article
BibTex RIS Cite

Tek Tabakalı Nanografende Lokal Spin Etkili Manyetizma

Year 2019, , 753 - 761, 30.09.2019
https://doi.org/10.17776/csj.568903

Abstract

Bu çalışmada, Kaneyoshi tarafından geliştirilen
etkin alan teorisi kullanılarak, tek tabakalı nanografenin mıknatıslanmalarına
lokal spin yönelimlerinin (yukarı ya da aşağı) etkileri incelendi. Tek tabakalı
nanografenin ve bileşenlerinin Jd1<0 (C1-spin yukarı, C2-spin aşağı ve C3-spin
yukarı) için T≈0.00'da çok küçük mıknatıslanmaya
(mC1≈mC2≈mC3≈mMLNG≈2.31x10-18≈0) sahip olduğu bulundu. Diğer taraftan,
Jd2<0, Jd3<0, Jd4<0 ve Jd5<0 için, tek tabakalı nanografen ve
bileşenleri (C1, C2 ve C3 atomları), Jd1<0’dakinden çok büyük lokal spin
etkili mıknatıslanmaya (mC1≈mC2≈mC3≈mMLNG≈;1>>2.31x10-18) sahiptirler. Bu
sonuçlar açıkça, lokal spin yönelimlerinin, tek tabakalı nanografenin
manyetizması üzerinde çok güçlü bir etkiye sahip olduğunu göstermektedir.

Supporting Institution

Kırıkkale Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)

Project Number

2018/060

References

  • [1]. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
  • [2]. Wallace P. R., The Band Theory of Graphite, Phys. Rev., 71 (1947) 622-634.
  • [3]. Geim A. and Novoselov K., The rise of graphene, Nature Mater., 6 (2007) 183-191.
  • [4]. Kedzierski J., Hsu P. L., Healey P., Wyatt P. W., Keast C. L., Sprinkle M., Berger C., de Heer W. A., Epitaxial Graphene Transistors on SiC Substrates. Electron Devices, IEEE Trans., 55 (2008) 2078-2085.
  • [5]. Wu Y. Q., Ye P. D., Capano M. A., Xuan Y., Sui Y., Qi M., Cooper J. A., Shen T., Pandey D., Prakash G., Reifenberger R., Top-gated graphene field-effect-transistors formed by decomposition of SiC, Appl. Phys. Lett., 92 (2008) 092102.
  • [6]. Lin Y. M., Garcia A. V., Han S. J., Farmer D. B., Meric I., Sun Y., Wu Y., Dimitrakopoulos C., Grill A., Avouris P., Jenkins K. A., Wafer-Scale Graphene Integrated Circuit, Science, 332 (2011) 1294-1297.
  • [7]. Guo Z., Dong R., Chakraborty P. S., Lourenco N., Palmer J., Hu Y., Ruan M., Hankinson J., Kunc J., Cressler J. D., Berger C., de Heer W.A., Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors, Nano Lett., 13 (2013) 942-947.
  • [8]. Fiori G. and Iannaccone G., Multiscale Modeling for Graphene-Based Nanoscale Transistors, Proceedings of the IEEE, 101 (2013) 1653-1669.
  • [9]. Schwierz F., Graphene transistors, Nature Nano., 5 (2010) 487-496.
  • [10]. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Two-dimensional gas of massless LXXXIII Dirac fermions in graphene, Nature, 438 (2005) 197-200.
  • [11]. Zhang Y., Jiang Z., Small J. P., Purewal M. S., Tan Y. W., Fazlollahi M., Chudow J. D., Jaszczak J. A., Stormer H. L., Kim P., Landau-Level Splitting in Graphene in High Magnetic Fields, Phys. Rev. Lett., 96 (2006) 136806.
  • [12]. Katsnelson M. I., Novoselov K. S., Geim A. K., Chiral tunnelling and the Klein paradox in graphene, Nature Phys., 2 (2006) 620-625.
  • [13]. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., The electronic properties of graphene, Rev. Modern Phys., 81 (2009) 109-162.
  • [14]. Nair R. R., Sepioni M., Tsai I-Ling, Lehtinen O., Keinonen J., Krasheninnikov A. V., Thomson T., Geim A. K., Grigorieva I. V., Spin-half paramagnetism in graphene induced by point defects, Nature Phys., 8 (2012) 199-202.
  • [15]. Liu Y., Tang N., Wan X., Feng Q., Li M., Xu Q., Liu F., Du Y., Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen, Scientific Reports, 3 (2013) 02566.
  • [16]. Giesbers A. J. M., Uhlirova K., Konecny M., Peters E. C., Burghard M., Aarts J., Flipse C. F. J., Inter-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene, Phys. Rev. Lett., 111 (2013) 166101.
  • [17]. Qin S., Guo X., Cao Y., Ni Z., Xu Q., Strong ferromagnetism of reduced graphene oxide, Carbon, 78 (2014) 559-565.
  • [18]. Sarkar S. K., Raul K. K., Pradhan S. S., Basu S., Nayak A., Magnetic properties of graphite oxide and reduced graphene oxide, Phys. E, 64 (2014) 78-82.
  • [19]. Ning G., Xu C., Hao L., Kazakova O., Fan Z., Wang H., Wang K., Gao J., Qian W., Wei F., Ferromagnetism in nanomesh graphene, Carbon, 51 (2013) 390-396.
  • [20]. Raj K. G., Joy P. A., Ferromagnetism at room temperature in activated graphene oxide, Chem. Phys. Lett., 605 (2014) 89-92.
  • [21]. Ramakrishna Matte H. S. S., Subrahmanyam K. S., Rao C.N.R., Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects, J. Phys. Chem. C. 113 (2009) 9982–9985.
  • [22]. Ray S. C., Soin N., Makgato T., Chuang C. H., Pong W. F., Roy S. S., Ghosh S. K., Strydom A. M., McLaughlin J. A., Graphene supported graphone/graphane bilayer nanostructure material for spintronics, Scientific Reports, 4 (2014) 03862.
  • [23]. Jansen H. J. F., Freeman A. J., Structural and electronic properties of graphite via an all-electron total-energy local-density approach, Phys. Rev. B, 35 (1987) 8207-8214.
  • [24]. Johansson L., Owman F., Mårtensson P., Persson C., Lindefelt U., Electronic structure of 6H-SiC (0001), Phys. Rev. B, 53 (1996) 13803-13807.
  • [25]. Mounet N., Marzari N., First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives, Phys. Rev. B, 71 (2005) 205214.
  • [26]. Olse T., Thygesen K. S., Random phase approximation applied to solids, molecules, and graphene-metal interfaces: From van der Waals to covalent bonding, Phys. Rev. B, 87 (2013) 075111.
  • [27]. Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E., Controlling the electronic structure of bilayer graphene, Science, 313 (2006) 951-954.
  • [28]. Masrour R., Bahmad L., Benyoussef A., Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study, J. Mag. Mag. Mater., 324 (2012) 3991-3996.
  • [29]. Orlof A., Ruseckas J., Zozoulenko I. V., Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects, Phys. Rev. B, 88 (2013) 125409.
  • [30]. Kaneyoshi T., Magnetizations of a nanoparticle described by the transverse Ising model, J.Mag. Mag. Mater., 321 (2009) 3430-3435.
  • [31]. Kaneyoshi T., Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces, J. Mag. Mag. Mater., 321 (2009) 3630-3636.
  • [32]. Kaneyoshi T., Magnetizations of a transverse Ising nanowire, J. Mag. Mag. Mater., 322 (2010) 3410-3415.
  • [33]. Kaneyoshi T., Phase diagrams of a transverse Ising nanowire, J. Mag. Mag. Mater., 322 (2010) 3014-3018.
  • [34]. Kaneyoshi T., Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube), J. Mag. Mag. Mater., 323 (2011) 2483-2486.
  • [35]. Kaneyoshi T., Some characteristic properties of initial susceptibility in a Ising nanotube, J. Mag. Mag. Mater., 323 (2011) 1145-1151.
  • [36]. Kaneyoshi T., Ferrimagnetism in a ultra-thin decorated Ising film, J. Mag. Mag. Mater., 336 (2013) 8-13.
  • [37]. Kaneyoshi T., Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: Effects of interlayer coupling at the surface, J. Mag. Mag. Mater., 339 (2013) 151-156.
  • [38]. Kaneyoshi T., Ferrimagnetic magnetizations in a thin film described by the transverse Ising model, Phys. Stat. Sol. (B), 246 (2009) 2359-2365.
  • [39]. Kaneyoshi T., Magnetic properties of a cylindrical Ising nanowire (or nanotube), Phys. Stat. Sol. (B), 248 (2011) 250-258.
  • [40]. Kaneyoshi T., Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube, effects of surface dilution, Sol. Stat. Comm., 151 (2011) 1528-1532.
  • [41]. Kaneyoshi T., The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling, Sol. Stat. Comm., 152 (2012) 883-886.
  • [42]. Kaneyoshi T., Ferrimagnetism in a decorated Ising nanowire, Phys. Lett. A, 376 (2012) 2352-2356.
  • [43]. Kaneyoshi T., The effects of surface dilution on magnetic properties in a transverse Ising nanowire, Phys. A, 391 (2012) 3616-3628.
  • [44]. Kaneyoshi T., Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; Effects of interlayer coupling at the surface, Phys. A, 392 (2013) 2406-2414.
  • [45]. Kaneyoshi T., Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces, Phys. B, 407 (2012) 4358-4364.
  • [46]. Kaneyoshi T., Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution at surfaces, Phys. B, 414 (2013) 72-77.
  • [47]. Kaneyoshi T., Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces, Phys. B, 436 (2014) 208-214.
  • [48]. Jiang W., Li X. X., Liu L. M., Chen J. N., Zhang F., Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field, J. Mag. Mag. Mater., 353 (2014) 90-98.
  • [49]. Ertaş M., Kocakaplan Y., Dynamic behaviors of the hexagonal Ising nanowire, Phys. Lett. A, 378 (2014) 845-850.
  • [50]. Kantar E., Keskin M., Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: effective-field theory approach, J. Mag. Mag. Mater., 349 (2014) 165-172.
  • [51]. Magoussi H., Zaim A., Kerouad M., Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube, Chin. Phys. B, 22 (2013) 116401.
  • [52]. Kocakaplan Y., Kantar E., Keskin M., Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur. Phys. J. B, 86 (2013) 40659.
  • [53]. Jiang W., Li X. X., Liu L. M., Surface effects on a multilayer and multisublattice cubic nanowire with core/shell. Phys. E, 53 (2013) 29-35.
  • [54]. Deviren B., Şener Y., Keskin M., Dynamic magnetic properties of the kinetic cylindrical Ising nanotube, Phys. A, 392 (2013) 3969-3983.
  • [55]. Wang C. D. and Ma R. G., Force induced phase transition of honeycomb-structured ferroelectric thin film, Phys. A, 392 (2013) 3570-3577.
  • [56]. Bouhou S., Essaoudi I., Ainane A., Saber M., Ahuja R., Dujardin F., Phase diagrams of diluted transverse Ising nanowire, J. Mag. Mag. Mater., 336 (2013) 75-82.
  • [57]. Zaim A., Kerouad M., Boughrara M., Effects of the random field on the magnetic behavior of nanowires with core/shell morphology, J. Mag. Mag. Mater., 331 (2013) 37-44.
  • [58]. Şarlı N., Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube, Phys. B, 411 (2013) 12-25.
  • [59]. Şarlı N., Keskin M., Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire, Sol. Stat. Comm., 152 (2012) 354-359.
  • [60]. Keskin M., Şarlı N., Deviren B., Hysteresis behaviors in a cylindrical Ising nanowire, Sol. Stat. Comm., 151 (2011) 1025-1030.
  • [61]. Yüksel Y., Akıncı Ü., Polat H., Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire, Phys. Stat. Sol. (B), 250 (2013) 196-206.
  • [62]. Akıncı Ü., Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: continuous distributions, J. Mag. Mag. Mater., 324 (2012) 4237-4244.
  • [63]. Akıncı Ü., Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: discrete distributions, J. Mag. Mag. Mater., 324 (2012) 3951-3960.
  • [64]. Şarlı N., Akbudak S., Polat Y., Ellialtıoğlu M. R., Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence, Phys. A, 434 (2015) 194-200.
  • [65]. Şarlı N., Akbudak S., Ellialtıoğlu M. R., The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene, Phys. B, 452 (2014) 18-22.
  • [66]. Lu Z. M., Si N., Wang Y. N., Zhang F., Meng J., Miao H. L., Jiang W., Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy, Phys. A, 523 (2019) 438-456.
  • [67]. Wu C., Shi K. L., Zhang Y., W. Jiang, Magneticproperties of iron nanowire encapsulated in carbon nanotubes doped with copper, J. Magn. Magn. Mater. 465 (2018) 114-121.
  • [68]. Zou C. L., Guo D. Q., Zhang F., Meng J., Miao H. L., Jiang W., Phys. E, 104 (2018) 138-145.
  • [69]. Wang K., Yin P., Zhang Y., Jiang W., Phase diagram and magnetization of a graphene nanoisland structure, Phys. A, 505 (2018) 268-279.
  • [70]. Wang J. M., Jiang W., Zhou C. L., Shi Z., Wu C., Magnetic properties of a nanoribbon: An effective-field theory, Superlattices and Microstructures, 102 (2017) 359-372.
  • [71]. Jiang W., Wang Y. N., Guo A. B., Yang Y. Y., Shi K. L., Magnetization plateaus and the susceptibilities of a nano-graphenes and wich-like structure, Carbon, 110 (2016) 41-47.
  • [72]. Kaneyoshi T., Differential Operator Technique In The Ising Spin Systems, Acta. Phys. Pol. A 83 (1993) 703-737.
  • [73]. Yıldız Y. G., Origin of the hardness in the monolayer nanographene. Phys. Lett. A (2019), https://doi.org/10.1016/j.physleta.2019.04.039.

Local Spin Induced Magnetism In The Monolayer Nanographene

Year 2019, , 753 - 761, 30.09.2019
https://doi.org/10.17776/csj.568903

Abstract

In this paper, we investigated local spin orientation (up or down) effects
on magnetizations of the monolayer nanographene by using effective field theory
developed by Kaneyoshi. It is found that the monolayer nanographene and its
components have very small magnetization (mC1≈mC2≈mC3≈mMLNG≈2.31x10-18≈0) at
T≈0.00 for the Jd1<0 (C1-spin up, C2-spin down and C3-spin up). On the other
hand, for Jd2<0, Jd3<0, Jd4<0, and Jd5<0, the monolayer
nanographene and its components (C1, C2 and C3 atoms) have very large local
spin induced magnetization (mC1≈mC2≈mC3≈mMLNG≈1;1>>2.31x10-18) than those
of the Jd1<0. These results clearly indicate that the local spin orientation
in the monolayer nanographene has very strong effect on its magnetism.

Project Number

2018/060

References

  • [1]. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
  • [2]. Wallace P. R., The Band Theory of Graphite, Phys. Rev., 71 (1947) 622-634.
  • [3]. Geim A. and Novoselov K., The rise of graphene, Nature Mater., 6 (2007) 183-191.
  • [4]. Kedzierski J., Hsu P. L., Healey P., Wyatt P. W., Keast C. L., Sprinkle M., Berger C., de Heer W. A., Epitaxial Graphene Transistors on SiC Substrates. Electron Devices, IEEE Trans., 55 (2008) 2078-2085.
  • [5]. Wu Y. Q., Ye P. D., Capano M. A., Xuan Y., Sui Y., Qi M., Cooper J. A., Shen T., Pandey D., Prakash G., Reifenberger R., Top-gated graphene field-effect-transistors formed by decomposition of SiC, Appl. Phys. Lett., 92 (2008) 092102.
  • [6]. Lin Y. M., Garcia A. V., Han S. J., Farmer D. B., Meric I., Sun Y., Wu Y., Dimitrakopoulos C., Grill A., Avouris P., Jenkins K. A., Wafer-Scale Graphene Integrated Circuit, Science, 332 (2011) 1294-1297.
  • [7]. Guo Z., Dong R., Chakraborty P. S., Lourenco N., Palmer J., Hu Y., Ruan M., Hankinson J., Kunc J., Cressler J. D., Berger C., de Heer W.A., Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors, Nano Lett., 13 (2013) 942-947.
  • [8]. Fiori G. and Iannaccone G., Multiscale Modeling for Graphene-Based Nanoscale Transistors, Proceedings of the IEEE, 101 (2013) 1653-1669.
  • [9]. Schwierz F., Graphene transistors, Nature Nano., 5 (2010) 487-496.
  • [10]. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Two-dimensional gas of massless LXXXIII Dirac fermions in graphene, Nature, 438 (2005) 197-200.
  • [11]. Zhang Y., Jiang Z., Small J. P., Purewal M. S., Tan Y. W., Fazlollahi M., Chudow J. D., Jaszczak J. A., Stormer H. L., Kim P., Landau-Level Splitting in Graphene in High Magnetic Fields, Phys. Rev. Lett., 96 (2006) 136806.
  • [12]. Katsnelson M. I., Novoselov K. S., Geim A. K., Chiral tunnelling and the Klein paradox in graphene, Nature Phys., 2 (2006) 620-625.
  • [13]. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., The electronic properties of graphene, Rev. Modern Phys., 81 (2009) 109-162.
  • [14]. Nair R. R., Sepioni M., Tsai I-Ling, Lehtinen O., Keinonen J., Krasheninnikov A. V., Thomson T., Geim A. K., Grigorieva I. V., Spin-half paramagnetism in graphene induced by point defects, Nature Phys., 8 (2012) 199-202.
  • [15]. Liu Y., Tang N., Wan X., Feng Q., Li M., Xu Q., Liu F., Du Y., Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen, Scientific Reports, 3 (2013) 02566.
  • [16]. Giesbers A. J. M., Uhlirova K., Konecny M., Peters E. C., Burghard M., Aarts J., Flipse C. F. J., Inter-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene, Phys. Rev. Lett., 111 (2013) 166101.
  • [17]. Qin S., Guo X., Cao Y., Ni Z., Xu Q., Strong ferromagnetism of reduced graphene oxide, Carbon, 78 (2014) 559-565.
  • [18]. Sarkar S. K., Raul K. K., Pradhan S. S., Basu S., Nayak A., Magnetic properties of graphite oxide and reduced graphene oxide, Phys. E, 64 (2014) 78-82.
  • [19]. Ning G., Xu C., Hao L., Kazakova O., Fan Z., Wang H., Wang K., Gao J., Qian W., Wei F., Ferromagnetism in nanomesh graphene, Carbon, 51 (2013) 390-396.
  • [20]. Raj K. G., Joy P. A., Ferromagnetism at room temperature in activated graphene oxide, Chem. Phys. Lett., 605 (2014) 89-92.
  • [21]. Ramakrishna Matte H. S. S., Subrahmanyam K. S., Rao C.N.R., Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects, J. Phys. Chem. C. 113 (2009) 9982–9985.
  • [22]. Ray S. C., Soin N., Makgato T., Chuang C. H., Pong W. F., Roy S. S., Ghosh S. K., Strydom A. M., McLaughlin J. A., Graphene supported graphone/graphane bilayer nanostructure material for spintronics, Scientific Reports, 4 (2014) 03862.
  • [23]. Jansen H. J. F., Freeman A. J., Structural and electronic properties of graphite via an all-electron total-energy local-density approach, Phys. Rev. B, 35 (1987) 8207-8214.
  • [24]. Johansson L., Owman F., Mårtensson P., Persson C., Lindefelt U., Electronic structure of 6H-SiC (0001), Phys. Rev. B, 53 (1996) 13803-13807.
  • [25]. Mounet N., Marzari N., First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives, Phys. Rev. B, 71 (2005) 205214.
  • [26]. Olse T., Thygesen K. S., Random phase approximation applied to solids, molecules, and graphene-metal interfaces: From van der Waals to covalent bonding, Phys. Rev. B, 87 (2013) 075111.
  • [27]. Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E., Controlling the electronic structure of bilayer graphene, Science, 313 (2006) 951-954.
  • [28]. Masrour R., Bahmad L., Benyoussef A., Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study, J. Mag. Mag. Mater., 324 (2012) 3991-3996.
  • [29]. Orlof A., Ruseckas J., Zozoulenko I. V., Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects, Phys. Rev. B, 88 (2013) 125409.
  • [30]. Kaneyoshi T., Magnetizations of a nanoparticle described by the transverse Ising model, J.Mag. Mag. Mater., 321 (2009) 3430-3435.
  • [31]. Kaneyoshi T., Ferrimagnetic magnetizations of transverse Ising thin films with diluted surfaces, J. Mag. Mag. Mater., 321 (2009) 3630-3636.
  • [32]. Kaneyoshi T., Magnetizations of a transverse Ising nanowire, J. Mag. Mag. Mater., 322 (2010) 3410-3415.
  • [33]. Kaneyoshi T., Phase diagrams of a transverse Ising nanowire, J. Mag. Mag. Mater., 322 (2010) 3014-3018.
  • [34]. Kaneyoshi T., Clear distinctions between ferromagnetic and ferrimagnetic behaviors in a cylindrical Ising nanowire (or nanotube), J. Mag. Mag. Mater., 323 (2011) 2483-2486.
  • [35]. Kaneyoshi T., Some characteristic properties of initial susceptibility in a Ising nanotube, J. Mag. Mag. Mater., 323 (2011) 1145-1151.
  • [36]. Kaneyoshi T., Ferrimagnetism in a ultra-thin decorated Ising film, J. Mag. Mag. Mater., 336 (2013) 8-13.
  • [37]. Kaneyoshi T., Reentrant phenomena in a transverse Ising nanowire (or nanotube) with a diluted surface: Effects of interlayer coupling at the surface, J. Mag. Mag. Mater., 339 (2013) 151-156.
  • [38]. Kaneyoshi T., Ferrimagnetic magnetizations in a thin film described by the transverse Ising model, Phys. Stat. Sol. (B), 246 (2009) 2359-2365.
  • [39]. Kaneyoshi T., Magnetic properties of a cylindrical Ising nanowire (or nanotube), Phys. Stat. Sol. (B), 248 (2011) 250-258.
  • [40]. Kaneyoshi T., Phase diagrams of a cylindrical transverse Ising ferrimagnetic nanotube, effects of surface dilution, Sol. Stat. Comm., 151 (2011) 1528-1532.
  • [41]. Kaneyoshi T., The possibility of a compensation point induced by a transverse field in transverse Ising nanoparticles with a negative core–shell coupling, Sol. Stat. Comm., 152 (2012) 883-886.
  • [42]. Kaneyoshi T., Ferrimagnetism in a decorated Ising nanowire, Phys. Lett. A, 376 (2012) 2352-2356.
  • [43]. Kaneyoshi T., The effects of surface dilution on magnetic properties in a transverse Ising nanowire, Phys. A, 391 (2012) 3616-3628.
  • [44]. Kaneyoshi T., Phase diagrams in an Ising nanotube (or nanowire) with a diluted surface; Effects of interlayer coupling at the surface, Phys. A, 392 (2013) 2406-2414.
  • [45]. Kaneyoshi T., Characteristic phenomena in nanoscaled transverse Ising thin films with diluted surfaces, Phys. B, 407 (2012) 4358-4364.
  • [46]. Kaneyoshi T., Phase diagrams in a ultra-thin transverse Ising film with bond or site dilution at surfaces, Phys. B, 414 (2013) 72-77.
  • [47]. Kaneyoshi T., Characteristic behaviors in an ultrathin Ising film with site- (or bond-) dilution at the surfaces, Phys. B, 436 (2014) 208-214.
  • [48]. Jiang W., Li X. X., Liu L. M., Chen J. N., Zhang F., Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field, J. Mag. Mag. Mater., 353 (2014) 90-98.
  • [49]. Ertaş M., Kocakaplan Y., Dynamic behaviors of the hexagonal Ising nanowire, Phys. Lett. A, 378 (2014) 845-850.
  • [50]. Kantar E., Keskin M., Thermal and magnetic properties of ternary mixed Ising nanoparticles with core-shell structure: effective-field theory approach, J. Mag. Mag. Mater., 349 (2014) 165-172.
  • [51]. Magoussi H., Zaim A., Kerouad M., Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube, Chin. Phys. B, 22 (2013) 116401.
  • [52]. Kocakaplan Y., Kantar E., Keskin M., Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur. Phys. J. B, 86 (2013) 40659.
  • [53]. Jiang W., Li X. X., Liu L. M., Surface effects on a multilayer and multisublattice cubic nanowire with core/shell. Phys. E, 53 (2013) 29-35.
  • [54]. Deviren B., Şener Y., Keskin M., Dynamic magnetic properties of the kinetic cylindrical Ising nanotube, Phys. A, 392 (2013) 3969-3983.
  • [55]. Wang C. D. and Ma R. G., Force induced phase transition of honeycomb-structured ferroelectric thin film, Phys. A, 392 (2013) 3570-3577.
  • [56]. Bouhou S., Essaoudi I., Ainane A., Saber M., Ahuja R., Dujardin F., Phase diagrams of diluted transverse Ising nanowire, J. Mag. Mag. Mater., 336 (2013) 75-82.
  • [57]. Zaim A., Kerouad M., Boughrara M., Effects of the random field on the magnetic behavior of nanowires with core/shell morphology, J. Mag. Mag. Mater., 331 (2013) 37-44.
  • [58]. Şarlı N., Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube, Phys. B, 411 (2013) 12-25.
  • [59]. Şarlı N., Keskin M., Two distinct magnetic susceptibility peaks and magnetic reversal events in a cylindrical core/shell spin-1 Ising nanowire, Sol. Stat. Comm., 152 (2012) 354-359.
  • [60]. Keskin M., Şarlı N., Deviren B., Hysteresis behaviors in a cylindrical Ising nanowire, Sol. Stat. Comm., 151 (2011) 1025-1030.
  • [61]. Yüksel Y., Akıncı Ü., Polat H., Investigation of bond dilution effects on the magnetic properties of a cylindrical Ising nanowire, Phys. Stat. Sol. (B), 250 (2013) 196-206.
  • [62]. Akıncı Ü., Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: continuous distributions, J. Mag. Mag. Mater., 324 (2012) 4237-4244.
  • [63]. Akıncı Ü., Effects of the randomly distributed magnetic field on the phase diagrams of Ising nanowire I: discrete distributions, J. Mag. Mag. Mater., 324 (2012) 3951-3960.
  • [64]. Şarlı N., Akbudak S., Polat Y., Ellialtıoğlu M. R., Effective distance of a ferromagnetic trilayer Ising nanostructure with an ABA stacking sequence, Phys. A, 434 (2015) 194-200.
  • [65]. Şarlı N., Akbudak S., Ellialtıoğlu M. R., The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene, Phys. B, 452 (2014) 18-22.
  • [66]. Lu Z. M., Si N., Wang Y. N., Zhang F., Meng J., Miao H. L., Jiang W., Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy, Phys. A, 523 (2019) 438-456.
  • [67]. Wu C., Shi K. L., Zhang Y., W. Jiang, Magneticproperties of iron nanowire encapsulated in carbon nanotubes doped with copper, J. Magn. Magn. Mater. 465 (2018) 114-121.
  • [68]. Zou C. L., Guo D. Q., Zhang F., Meng J., Miao H. L., Jiang W., Phys. E, 104 (2018) 138-145.
  • [69]. Wang K., Yin P., Zhang Y., Jiang W., Phase diagram and magnetization of a graphene nanoisland structure, Phys. A, 505 (2018) 268-279.
  • [70]. Wang J. M., Jiang W., Zhou C. L., Shi Z., Wu C., Magnetic properties of a nanoribbon: An effective-field theory, Superlattices and Microstructures, 102 (2017) 359-372.
  • [71]. Jiang W., Wang Y. N., Guo A. B., Yang Y. Y., Shi K. L., Magnetization plateaus and the susceptibilities of a nano-graphenes and wich-like structure, Carbon, 110 (2016) 41-47.
  • [72]. Kaneyoshi T., Differential Operator Technique In The Ising Spin Systems, Acta. Phys. Pol. A 83 (1993) 703-737.
  • [73]. Yıldız Y. G., Origin of the hardness in the monolayer nanographene. Phys. Lett. A (2019), https://doi.org/10.1016/j.physleta.2019.04.039.
There are 73 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Yasin Göktürk Yıldız 0000-0002-1391-1888

Project Number 2018/060
Publication Date September 30, 2019
Submission Date May 22, 2019
Acceptance Date September 5, 2019
Published in Issue Year 2019

Cite

APA Yıldız, Y. G. (2019). Local Spin Induced Magnetism In The Monolayer Nanographene. Cumhuriyet Science Journal, 40(3), 753-761. https://doi.org/10.17776/csj.568903