Research Article
BibTex RIS Cite
Year 2020, , 11 - 21, 22.03.2020
https://doi.org/10.17776/csj.558821

Abstract

References

  • [1] Harborne J. B. and Williams C.A., Advances in flavonoid research since 1992, Phytochemistry 55 (2000) 481-504.
  • [2] Heim K. E., Tagliaferro A. R. and Bobilya D. J., Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, Journal of Nutritional Biochemistry 13 (2002) 572-584.
  • [3] Hollman P. C. H. and Katan M. B., Dietary Flavonoids: Intake, Health Effects and Bioavailability, Food and Chemical Toxicology 37 (9,10) (1999) 937-942.
  • [4] Mullie P., Clarys P., Deriemaeker P. and Hebbelinck M., Estimation of Daily Human Intake of Food Flavonoids, Plant Foods for Human Nutrition 62(3) (2007) 93-98.
  • [5] Hertog M. G. L., Feskens E. J. M., Kromhout D., Hertog M. G. L., Hollman P. C. H., Hertog M. G. L. and Katan M. B., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study, The Lancet 342 (8878) (1993) 1007-1011.
  • [6] Mullie P., Clarys P., Deriemaeker P. and Hebbelinck M., Estimation of daily human intake of food flavonoids, International Journal of Food Science and Nutrition 59(4) (2008) 291-298.
  • [7] Chun O. K., Chung S. J. and Song W. O., Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults, The Journal of Nutrition 137(5) (2007) 1244-1252.
  • [8] Marchand L. L., Murphy S. P., Hankin J. H., Wilkens L. R. and Kolonel L. N., Intake of Flavonoids and Lung Cancer, JNCI: Journal of the National Cancer Institute 92(2) (2000) 154-160.
  • [9] Catoni C., Schaefer H. M. and Peters A., Blackwell Publishing Ltd Fruit for health: the effect of flavonoids on humoral immune response and food selection in a frugivorous bird, Functional Ecology 22 (2008) 649-654.
  • [10] Wenner C.A., Parker K., Simon M.A., Adams L, Greene K. and Standish L.J, Botanical medicines with gynecological anticancer activity: a literature review., Journal of the American Medical Women's Association (1972), 54-4 (1999) 184-190.
  • [11] Lai M. Y., Hsiu S. L., Tsai S. Y., Hou Y. C. and Chao P. D. L., Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats, Journal of Pharmacy and Pharmacology 55(2) (2003) 205-209.
  • [12] Medina J. J. M., Naso L. G., Pérez A. L., Rizzi A., Ferrer E. G. and Williams P. A. M., Antioxidant and anticancer effects and bioavailability studies of the flavonoid baicalin and its oxidovanadium(IV) complex, Journal of Inorganic Biochemistry 166 (2017) 150-161.
  • [13] R.D. Dennington II, T.A. Keith, J.M. Millam, GaussView 5.0, Wallingford, CT, 2009.
  • [14] [14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • [15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
  • [16] PerkinElmer, 2016. ChemBioDraw Ultra Version (15.1.0.144), CambridgeSoft Waltham, MA, USA.
  • [17] Michal. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004-2010.
  • [18] Maestro Version 11.9, MMshare Version 4.4.012, Release 2018-4, Platform Windows-x64. Maestro, Schrödinger, LLC, New York, NY, 2019.
  • [19] Cheng Z., Chen Q., Pontius F.W., Gao X., Tan Y., Ma Y. and Shen Z. Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study, Chemosphere 240 (2020) 124928.
  • [20] Sayin K., Erkan Kariper S., Alagöz Sayin T. and Karakaş D. Theoretical spectroscopic study of seven zinc(II) complex withmacrocyclic Schiff-base ligand, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 348-356.
  • [21] Santiago R. N. S., Freire P. T. C., Ayala A. P., Teixeira A. M. R., Santos H. S., Bandeira P. N., Gonçalves F. G., Oliveria M. T. A., Cruz B. G. and Sena Jr. D. M. Crystal structure, vibrational spectra and quantum chemical parameters of 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from the Croton anisodontus Müll. Arg. (Euphorbiaceae), Journal of Molecular Structure 1171 (2018) 815-826.
  • [22] Atlam F. M., Awad M. K. and El-Bastawissy E.A., Computational simulation of the effect of quantum chemical parameters on the molecular docking of HMG-CoA reductase drugs, Journal of Molecular Structure 1075 (2014) 311-326.
  • [23] Sayin K., Karakaş D., Erkan Kariper S. and Alagöz Sayin T., Computational study of some fluoroquinolones: Structural, spectral and docking investigations, Journal of Molecular Structure 1156 (2018) 172-181.
  • [24] Li L., Niu S. Y., Shi Z. F., Gong L. G., Jin J., Chi Y. X. and Xing Y. H., Structures and light-induced surface electron behavior of some oxo-vanadium complexes, Polyhedron 30 (2011) 976-982.
  • [25] Coletti A., Galloni P., Sartorel A., Conte V. and Floris B., Salophen and salen oxo vanadium complexes as catalysts of sulfides oxidation with H2O2: Mechanistic insights, Catalysis Today 192 (2012) 44-55.
  • [26] Fernandez T. L., Souza E. T., Visentin L. C., Santos J. V., Mangrich A. S., Faria R. B., Antunes O. A. C. and Scarpellini M. A new oxo-vanadium complex employing an imidazole-rich tripodal ligand: A bioinspired bromide and hydrocarbon oxidation catalyst, Journal of Inorganic Biochemistry 103 (2009) 474-479.
  • [27] Günsel A., Kobyaoğlu A., Bilgiçli A.T., Tüzün B., Tosun B., Arabaci G. and Yarasir M.N., Novel biologically active metallophthalocyanines as promising antioxidant-antibacterial agents: Synthesis, characterization and computational properties, Journal of Molecular Structure 1200 (2020) 127127.
  • [28] Mehri M., Chafai N., Ouksel L., Benbouguerra K., Hellal A. and Chafaa S., Synthesis, electrochemical and classical evaluation of the antioxidant activity of three a-aminophosphonic acids: Experimental and theoretical investigation, Journal of Molecular Structure 1171 (2018) 179-189.
  • [29] Yamagami C., Akamatsu M., Motohashi N., Hamada S. and Tanahashi T., Quantitative structure–activity relationship studies for antioxidant hydroxybenzalacetones by quantum chemicaland 3-D-QSAR(CoMF) analyses, Bioorganic & Medicinal Chemistry Letters 15 (2005) 2845–2850.
  • [30] Gaber M., El-Ghamry H.A., Fathalla S.K. and Mansour M.A., Synthesis, spectroscopic, thermal and molecular modeling studies of Zn2+, Cd2+ and UO2 2+ complexes of Schiff bases containing triazole moiety. Antimicrobial, anticancer, antioxidant and DNA binding studies, Materials Science & Engineering C 83 (2018) 78-89.

Structural, spectral, biological and antioxidant analyses of baicalin and ıts vanadium complexes: a dft study

Year 2020, , 11 - 21, 22.03.2020
https://doi.org/10.17776/csj.558821

Abstract

Molecular simulation analyses of baicalin and its vanadium complexes were done at B3LYP/6-31+G(d) and B3LYP/ANL2DZ levels, respectively. The conformer analyses were performed for baicalin and the most stable one is determined at OPLS3e method by using Maestro 11.9 program. Structural and spectral analyses of the baicalin – vanadium complex is performed in gas phase and water. Potential energy distribution (PED) analyses were done to evaluate the infrared (IR) spectra. 1H- and 13C-NMR spectra of V (IV) complex are analyzed. Finally, biological reactivity of related compounds is compared with that of cisplatin by using quantum chemical descriptors (QCD). Antioxidant properties of related structures are compared with each other by using same QCDs. According to QCD rankings, antioxidant activity of baicalin is increased with the complexing of studied ligand.

References

  • [1] Harborne J. B. and Williams C.A., Advances in flavonoid research since 1992, Phytochemistry 55 (2000) 481-504.
  • [2] Heim K. E., Tagliaferro A. R. and Bobilya D. J., Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, Journal of Nutritional Biochemistry 13 (2002) 572-584.
  • [3] Hollman P. C. H. and Katan M. B., Dietary Flavonoids: Intake, Health Effects and Bioavailability, Food and Chemical Toxicology 37 (9,10) (1999) 937-942.
  • [4] Mullie P., Clarys P., Deriemaeker P. and Hebbelinck M., Estimation of Daily Human Intake of Food Flavonoids, Plant Foods for Human Nutrition 62(3) (2007) 93-98.
  • [5] Hertog M. G. L., Feskens E. J. M., Kromhout D., Hertog M. G. L., Hollman P. C. H., Hertog M. G. L. and Katan M. B., Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study, The Lancet 342 (8878) (1993) 1007-1011.
  • [6] Mullie P., Clarys P., Deriemaeker P. and Hebbelinck M., Estimation of daily human intake of food flavonoids, International Journal of Food Science and Nutrition 59(4) (2008) 291-298.
  • [7] Chun O. K., Chung S. J. and Song W. O., Estimated Dietary Flavonoid Intake and Major Food Sources of U.S. Adults, The Journal of Nutrition 137(5) (2007) 1244-1252.
  • [8] Marchand L. L., Murphy S. P., Hankin J. H., Wilkens L. R. and Kolonel L. N., Intake of Flavonoids and Lung Cancer, JNCI: Journal of the National Cancer Institute 92(2) (2000) 154-160.
  • [9] Catoni C., Schaefer H. M. and Peters A., Blackwell Publishing Ltd Fruit for health: the effect of flavonoids on humoral immune response and food selection in a frugivorous bird, Functional Ecology 22 (2008) 649-654.
  • [10] Wenner C.A., Parker K., Simon M.A., Adams L, Greene K. and Standish L.J, Botanical medicines with gynecological anticancer activity: a literature review., Journal of the American Medical Women's Association (1972), 54-4 (1999) 184-190.
  • [11] Lai M. Y., Hsiu S. L., Tsai S. Y., Hou Y. C. and Chao P. D. L., Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats, Journal of Pharmacy and Pharmacology 55(2) (2003) 205-209.
  • [12] Medina J. J. M., Naso L. G., Pérez A. L., Rizzi A., Ferrer E. G. and Williams P. A. M., Antioxidant and anticancer effects and bioavailability studies of the flavonoid baicalin and its oxidovanadium(IV) complex, Journal of Inorganic Biochemistry 166 (2017) 150-161.
  • [13] R.D. Dennington II, T.A. Keith, J.M. Millam, GaussView 5.0, Wallingford, CT, 2009.
  • [14] [14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • [15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
  • [16] PerkinElmer, 2016. ChemBioDraw Ultra Version (15.1.0.144), CambridgeSoft Waltham, MA, USA.
  • [17] Michal. H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004-2010.
  • [18] Maestro Version 11.9, MMshare Version 4.4.012, Release 2018-4, Platform Windows-x64. Maestro, Schrödinger, LLC, New York, NY, 2019.
  • [19] Cheng Z., Chen Q., Pontius F.W., Gao X., Tan Y., Ma Y. and Shen Z. Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study, Chemosphere 240 (2020) 124928.
  • [20] Sayin K., Erkan Kariper S., Alagöz Sayin T. and Karakaş D. Theoretical spectroscopic study of seven zinc(II) complex withmacrocyclic Schiff-base ligand, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 348-356.
  • [21] Santiago R. N. S., Freire P. T. C., Ayala A. P., Teixeira A. M. R., Santos H. S., Bandeira P. N., Gonçalves F. G., Oliveria M. T. A., Cruz B. G. and Sena Jr. D. M. Crystal structure, vibrational spectra and quantum chemical parameters of 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from the Croton anisodontus Müll. Arg. (Euphorbiaceae), Journal of Molecular Structure 1171 (2018) 815-826.
  • [22] Atlam F. M., Awad M. K. and El-Bastawissy E.A., Computational simulation of the effect of quantum chemical parameters on the molecular docking of HMG-CoA reductase drugs, Journal of Molecular Structure 1075 (2014) 311-326.
  • [23] Sayin K., Karakaş D., Erkan Kariper S. and Alagöz Sayin T., Computational study of some fluoroquinolones: Structural, spectral and docking investigations, Journal of Molecular Structure 1156 (2018) 172-181.
  • [24] Li L., Niu S. Y., Shi Z. F., Gong L. G., Jin J., Chi Y. X. and Xing Y. H., Structures and light-induced surface electron behavior of some oxo-vanadium complexes, Polyhedron 30 (2011) 976-982.
  • [25] Coletti A., Galloni P., Sartorel A., Conte V. and Floris B., Salophen and salen oxo vanadium complexes as catalysts of sulfides oxidation with H2O2: Mechanistic insights, Catalysis Today 192 (2012) 44-55.
  • [26] Fernandez T. L., Souza E. T., Visentin L. C., Santos J. V., Mangrich A. S., Faria R. B., Antunes O. A. C. and Scarpellini M. A new oxo-vanadium complex employing an imidazole-rich tripodal ligand: A bioinspired bromide and hydrocarbon oxidation catalyst, Journal of Inorganic Biochemistry 103 (2009) 474-479.
  • [27] Günsel A., Kobyaoğlu A., Bilgiçli A.T., Tüzün B., Tosun B., Arabaci G. and Yarasir M.N., Novel biologically active metallophthalocyanines as promising antioxidant-antibacterial agents: Synthesis, characterization and computational properties, Journal of Molecular Structure 1200 (2020) 127127.
  • [28] Mehri M., Chafai N., Ouksel L., Benbouguerra K., Hellal A. and Chafaa S., Synthesis, electrochemical and classical evaluation of the antioxidant activity of three a-aminophosphonic acids: Experimental and theoretical investigation, Journal of Molecular Structure 1171 (2018) 179-189.
  • [29] Yamagami C., Akamatsu M., Motohashi N., Hamada S. and Tanahashi T., Quantitative structure–activity relationship studies for antioxidant hydroxybenzalacetones by quantum chemicaland 3-D-QSAR(CoMF) analyses, Bioorganic & Medicinal Chemistry Letters 15 (2005) 2845–2850.
  • [30] Gaber M., El-Ghamry H.A., Fathalla S.K. and Mansour M.A., Synthesis, spectroscopic, thermal and molecular modeling studies of Zn2+, Cd2+ and UO2 2+ complexes of Schiff bases containing triazole moiety. Antimicrobial, anticancer, antioxidant and DNA binding studies, Materials Science & Engineering C 83 (2018) 78-89.
There are 30 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Natural Sciences
Authors

Koray Sayın 0000-0001-6648-5010

Ayhan Üngördü 0000-0002-7543-8379

Publication Date March 22, 2020
Submission Date April 29, 2019
Acceptance Date November 11, 2019
Published in Issue Year 2020

Cite

APA Sayın, K., & Üngördü, A. (2020). Structural, spectral, biological and antioxidant analyses of baicalin and ıts vanadium complexes: a dft study. Cumhuriyet Science Journal, 41(1), 11-21. https://doi.org/10.17776/csj.558821