Research Article
BibTex RIS Cite

Bazı 2-aminotiazol Türevlerine Maruz Kalmış Glutatyon Redüktaz Aktivitesindeki Değişimlerinin Belirlenmesi

Year 2019, , 136 - 140, 22.03.2019
https://doi.org/10.17776/csj.504690

Abstract

Bu çalışmada, 2-Aminotiazol türevleri olan
4,4’-(disulfanediylbis(methylene))bis(thiazol-2-amine) dihyrochloride (DMTA) ve
2-amino-4-(chloromethyl)thiazole hydrochloride (ACT)’in 0 dan 500 mg/L ye
değişen derişimlerinin ekmek mayası (Saccharomyces
cerevisiae)
glutatyon redüktazı (GR) üzerine olan etkileri araştırılmıştır.
25, 50, 100, 250 ve 500 mg/L derişimlere maruz bırakılma ile % GR
aktivitesindeki değişimler, DMTA uygulamalarında sırasıyla -5,29 ; -3,85; -2,40
; -6,73 ve -10,58 olarak hesaplanırken, ACT uygulamalarında sırasıyla +0,98;
0,00; -0,49; -2,45 ve 0,00 olarak hesaplanmıştır. Bu çalışma, DMTA
derişimlerinin artışı ile GR aktivitesinde hafif bir düşüş olduğunu ve ACT
derişimlerinin artışı ile GR aktivitesinde önemli bir değişimin olmadığını
göstermiştir. Ancak kontrol aktivitelerine göre, bu 2-aminotiazol türevlerinin
etkileştiği GR aktivitelerinde herhangi bir istatistiksel değişim
gözlemlenmemiştir   (p >  0,05, n = 3).

References

  • [1]. Ghaemmaghami S., May B.C.H., Renslo A.R. and Prusiner S.B., Discovery of 2- Aminothiazoles as Potent Antiprion Compounds, J. Virol., 84-7 (2010) 3408–3412.
  • [2]. Siddiqui H.L., Zia-Ur-Rehman M., Ahmad N., Weaver G.W. and Lucas, P.D., Synthesis and Antibacterial Activity of Bis[2-Amino-4-Phenyl-5-Thiazolyl] Disulfides, Chem. Pharm. Bull., 55-7 (2007) 1014–1017.
  • [3]. Kesicki E.A., Bailey M.A., Ovechkina Y., Early J.V., Alling T., Bowman J., Zuniga E.S., Dalai S., Kumar N., Masquelin T., Hipskind P.A., Odingo J.O., Parish T., Synthesis and Evaluation of the 2-Aminothiazoles as Anti-Tubercular Agents, Plos One, 11-5 (2016) e0155209.
  • [4]. Lin P., Hou R., Wang H., Kang I. and Chen L., Efficient Synthesis of 2-Aminothiazoles and Fanetizole in Liquid PEG-400 at Ambient Conditions, J. Chin. Chem. Soc., 56-3 (2009) 455–458.
  • [5]. Kim K.S., Kimball S.D., Misra R.N., Rawlins D.B., Hunt J.T., Xiao H.Y., Lu S., Qian L., Han W-C., Shan W., Mitt T., Cai Z.W., Poss M.A., Zhu H., Sack J.S., Tokarski J.S., Chang C.Y., Pavletich N., Kamath A., Humphreys W.G., Marathe P., Bursuker I., Kellar K.A., Roongta U., Batorsky R., Mulheron J.G., Bol D., Fairchild C.R., Lee F.Y. and Webster K.R., Discovery of Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2: Synthesis, X-Ray Crystallographic Analysis, and Biological Activities, J. Med. Chem., 45-18 (2002) 3905–3927.
  • [6]. Halliwell B., Gutteridge J. M. C., Free Radicals in Biology and Medicine. 3rd ed. New York: Oxford University Press, 1999; pp 143-144.
  • [7]. Deponte, M., Glutathione Catalysis and the Reaction Mechanisms of Glutathione-Dependent Enzymes, Biochim. Biophys. Acta., 1830 (2013) 3217–3266.
  • [8]. Karabıyık H., Kırılmış C., Karabıyık H., Geometry Dependence of Electron Donating or Accepting Abilities of Amine Groups in 4,4’Disulfanediylbis(Methylene)Dithiazol-2-Amine: Pyramidal Versus Planar, J. Mol. Struct., 1141 (2017) 650-659. [9]. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 193 (1951) 265–275.
  • [10]. Carlberg I. and Mannervik B., Purification and Characterization of the Flavoenzyme Glutathione Reductase from Rat Liver, J. Biol. Chem., 250-14 (1975) 5475–5480.
  • [11]. Karadag H., Bilgin R., Effect of Cyprodinil and Fludioxonil Pesticides on Human Superoxide Dismutase, Asian J. Chem., 22-10 (2010) 8147-8154.
  • [12]. Huang X., Cheng C.C., Fischmann T.O., Duca J.S., Richards M., Tadikonda P.K., Reddy P.A., Zhao L., Siddiqui M.A., Parry D., Davis N., Seghezzi W., Wiswell D., Shipps Jr G.W., Structure-Based Design and Optimization of 2-Aminothiazole-4-Carboxamide as a New Class of CHK1 Inhibitors, Bioorg. Med. Chem. Lett., 23 (2013) 2590–2594.
  • [13]. Vogt D., Weber J., Ihlefeld K., Brüggerhoff A., Proschak E., Stark H., Design, Synthesis and Evaluation of 2-Aminothiazole Derivatives as Sphingosine Kinase Inhibitors, Bioorgan. Med. Chem., 22 (2014) 5354–5367.
  • [14]. Saeed A., Mahesar P.A., Channar P.A., Abbas Q., Larik F.A., Hassan M., Raza H., Seo S.Y., Synthesis, Molecular Docking Studies of Coumarinyl-Pyrazolinyl Substituted Thiazoles as Non-Competitive Inhibitors of Mushroom Tyrosinase, Bioorg. Chem., 74 (2017) 187–196.

Determination of Glutathione Reductase Activity Changes Exposed to Some 2-Aminothiazole Derivatives

Year 2019, , 136 - 140, 22.03.2019
https://doi.org/10.17776/csj.504690

Abstract



In this work, effects of concentrations ranging
from 0 to 500 mg/L of some 2-aminothiazole derivatives such as
4,4’-(disulfanediylbis(methylene))bis(thiazol-2-amine) dihyrochloride (DMTA)
and 2-amino-4-(chloromethyl)thiazole hydrochloride (ACT) on glutathione
reductase from baker's yeast (Saccharomyces
cerevisiae)
(GR) were investigated. With exposure of 25, 50, 100, 250 and
500 mg/L concentrations, % GR activity changes were calculated as -5.29 ; -3.85
; -2.40 ; -6.73 and -10.58 in DMTA applications, while these changes were
calculated as +0.98 ; 0.00 ; -0.49 ; -2.45 and 0.00  in ACT applications, respectively. This work
indicated that there was a slight decrease in GR activity with the increase of
DMTA concentrations and there was no significant change in GR activity with the
increase of ACT concentrations.  But
according to control activities, no statitistical changes were observed in GR
activities with exposure of these 2-aminothiazole derivatives (p > 0.05,
n=3).



References

  • [1]. Ghaemmaghami S., May B.C.H., Renslo A.R. and Prusiner S.B., Discovery of 2- Aminothiazoles as Potent Antiprion Compounds, J. Virol., 84-7 (2010) 3408–3412.
  • [2]. Siddiqui H.L., Zia-Ur-Rehman M., Ahmad N., Weaver G.W. and Lucas, P.D., Synthesis and Antibacterial Activity of Bis[2-Amino-4-Phenyl-5-Thiazolyl] Disulfides, Chem. Pharm. Bull., 55-7 (2007) 1014–1017.
  • [3]. Kesicki E.A., Bailey M.A., Ovechkina Y., Early J.V., Alling T., Bowman J., Zuniga E.S., Dalai S., Kumar N., Masquelin T., Hipskind P.A., Odingo J.O., Parish T., Synthesis and Evaluation of the 2-Aminothiazoles as Anti-Tubercular Agents, Plos One, 11-5 (2016) e0155209.
  • [4]. Lin P., Hou R., Wang H., Kang I. and Chen L., Efficient Synthesis of 2-Aminothiazoles and Fanetizole in Liquid PEG-400 at Ambient Conditions, J. Chin. Chem. Soc., 56-3 (2009) 455–458.
  • [5]. Kim K.S., Kimball S.D., Misra R.N., Rawlins D.B., Hunt J.T., Xiao H.Y., Lu S., Qian L., Han W-C., Shan W., Mitt T., Cai Z.W., Poss M.A., Zhu H., Sack J.S., Tokarski J.S., Chang C.Y., Pavletich N., Kamath A., Humphreys W.G., Marathe P., Bursuker I., Kellar K.A., Roongta U., Batorsky R., Mulheron J.G., Bol D., Fairchild C.R., Lee F.Y. and Webster K.R., Discovery of Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2: Synthesis, X-Ray Crystallographic Analysis, and Biological Activities, J. Med. Chem., 45-18 (2002) 3905–3927.
  • [6]. Halliwell B., Gutteridge J. M. C., Free Radicals in Biology and Medicine. 3rd ed. New York: Oxford University Press, 1999; pp 143-144.
  • [7]. Deponte, M., Glutathione Catalysis and the Reaction Mechanisms of Glutathione-Dependent Enzymes, Biochim. Biophys. Acta., 1830 (2013) 3217–3266.
  • [8]. Karabıyık H., Kırılmış C., Karabıyık H., Geometry Dependence of Electron Donating or Accepting Abilities of Amine Groups in 4,4’Disulfanediylbis(Methylene)Dithiazol-2-Amine: Pyramidal Versus Planar, J. Mol. Struct., 1141 (2017) 650-659. [9]. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 193 (1951) 265–275.
  • [10]. Carlberg I. and Mannervik B., Purification and Characterization of the Flavoenzyme Glutathione Reductase from Rat Liver, J. Biol. Chem., 250-14 (1975) 5475–5480.
  • [11]. Karadag H., Bilgin R., Effect of Cyprodinil and Fludioxonil Pesticides on Human Superoxide Dismutase, Asian J. Chem., 22-10 (2010) 8147-8154.
  • [12]. Huang X., Cheng C.C., Fischmann T.O., Duca J.S., Richards M., Tadikonda P.K., Reddy P.A., Zhao L., Siddiqui M.A., Parry D., Davis N., Seghezzi W., Wiswell D., Shipps Jr G.W., Structure-Based Design and Optimization of 2-Aminothiazole-4-Carboxamide as a New Class of CHK1 Inhibitors, Bioorg. Med. Chem. Lett., 23 (2013) 2590–2594.
  • [13]. Vogt D., Weber J., Ihlefeld K., Brüggerhoff A., Proschak E., Stark H., Design, Synthesis and Evaluation of 2-Aminothiazole Derivatives as Sphingosine Kinase Inhibitors, Bioorgan. Med. Chem., 22 (2014) 5354–5367.
  • [14]. Saeed A., Mahesar P.A., Channar P.A., Abbas Q., Larik F.A., Hassan M., Raza H., Seo S.Y., Synthesis, Molecular Docking Studies of Coumarinyl-Pyrazolinyl Substituted Thiazoles as Non-Competitive Inhibitors of Mushroom Tyrosinase, Bioorg. Chem., 74 (2017) 187–196.
There are 13 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Hasan Karadağ 0000-0001-5701-8445

Emine Eroğlu 0000-0002-1543-3381

Cumhur Kırılmış 0000-0002-9190-4800

Publication Date March 22, 2019
Submission Date December 28, 2018
Acceptance Date February 5, 2019
Published in Issue Year 2019

Cite

APA Karadağ, H., Eroğlu, E., & Kırılmış, C. (2019). Determination of Glutathione Reductase Activity Changes Exposed to Some 2-Aminothiazole Derivatives. Cumhuriyet Science Journal, 40(1), 136-140. https://doi.org/10.17776/csj.504690