Research Article
BibTex RIS Cite

Neonikotinoidler ile İnsan Lenfositlerinde Genotoksisitenin Uyarılması

Year 2018, , 201 - 210, 16.03.2018
https://doi.org/10.17776/csj.406158

Abstract

Bu çalışmada, neonikotinoid grubu
insektisitlerden imidakloprid (İMİ) ve asetamiprid (ASE)’in genotoksik etkileri
insane peripheral lenfosit
hücrelerinde Kardeş Kromatid Değişim
Testi (KKD) ile araştırılmıştır. Bu maddelerin olası genotoksik etkilerinin
giderilebilmesi için de Portulaca oleracea
L. (Semizotu) bitkisine ait su ve methanol ekstreleri kullanılmıştır. İnsektisitlere
ait genotoksisitenin belirlenmesi amacıyla kültür ortamına farklı konsantrasyonlarda
İMİ (50, 100, 250 ve 500 ppm) ve ASE (25, 50, 100 ve 250 ppm) insektisitleri ilave
edilmiştir.Yapılan incelemeler sonucu, her iki insektisitin artan konsantrasyonuna
bağlı olarak tüm uygulama gruplarında KKD frekansında artış gözlenmiştir
(P<0,05). Ancak semizotu bitkisinin su (POsu) ve methanol (POmet)
ekstreleri, insektisitlerin en yüksek uygulama grupları (İMİ:500ppm ve ASE:250ppm)
ile birlikte (1:1/v:v) uygulandığı zaman KKD frekansının azaldığı ve bunun da
istatistiksel olarak önemli olduğu bulunmuştur (P<0,05). Elde edilen bu bulgulara göre kardeş
kromatit değişiminde gözlenen artış, genetik materyalde oluşan hasarın
bir göstergesi olarak değerlendirilmiştir. Ayrıca POmet ve POsu
ile bu hasarların azaltılması da semizotunun antigenotoksik bir ajan
olabileceğini göstermektedir.

References

  • [1]. Türkiye istatistik kurumu resmi sitesi, TÜİK. Adres: http://www.tuik.gov.tr Retrived April 12, 2017.
  • [2]. Demircan V. ve Yılmaz H., Isparta ili elma üretiminde tarımsal ilaç kullanımının çevresel duyarlılık ve ekonomik açıdan analizi, Ekoloji., 57 (2005) 15-25.
  • [3]. Arslan N. ve Yılmaz G., Pestisit kirliliğinin azaltılmasında bitkisel bir kaynak pireotu (Pyrethrum sp.) türleri, Ekoloji., 6 (1993) 3-6.
  • [4]. Greene S.A. and Pohanish R.P., Sittig’s Handbook of Pesticides and Agricultural Chemicals, 2nd edition NY, Norwich, 2005; pp 1189.
  • [5]. Jeschke P., Nauen R., Schindler M., Elbert A., Overview of the status and global strategy for neonicotinoids, J Agr Food Chem., 59 (2011) 2897-2908.
  • [6]. Tomizawa M. and Yamamoto I., Structure-activity relationships of nicotinoids and imidacloprid analogs, J Pesticide Sci., 18-1 (1993) 91-98.
  • [7]. Yücer M.M., Ruhsatlı Tarım İlaçları, İstanbul: Hasad Yayıncılık, 2012.
  • [8]. Zang Y., Zhong Y., Luo Y. Kong Z.M., Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida, Environ Pollut., 108 (2000) 271-278.
  • [9]. All J., Lance K., Lohmeyer K., Ovicidal properties of leverage for bollworm in cotton, In Proc. Beltwide Cotton Conf., TN, Memphis, 2001.
  • [10]. Parrish M.D., Ayad H., Holmes K., Ovicidal Activity of Acetamiprid (Assail TM brand 70WP insecticide) on Economic Pests of Cotton, In Proc. Beltwide Cotton Conf., TN, Memphis, 2001.
  • [11]. Lucero L., Pastor S., Suárez S., Durbán R., Gómez C., Parrón T., Creus A., Marcos R., Cytogenetic biomonitoring of Spanish greenhouse workers exposed to pesticides: micronuclei analysis in peripheral blood lymphocytes and buccal epithelial cells, Mutat Res., 464 (2000) 255-262.
  • [12]. Yavuz Kocaman A., Acetamiprid ve Alpha-cypermethrin Pestisidlerinin Tek Başına ve Karışım Halinde Kullanıldıkları Zaman İnsan Periferal Lenfositlerindeki İn Vitro Genotoksik Etkileri, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana. 2007.
  • [13]. Feng S., Kong Z., Wang X., Zhao L., Peng P., Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell, Chemosphere., 56-5 (2004) 457-63.
  • [14]. Plazar J., Filipic M., Groothuis G.M., Antigenotoxic effect of xanthohumol in rat liver slices, Toxicol in vitro., 22 (2008) 318-327.
  • [15]. Kızılet H., Kasımoğlu C., Uysal H., Can the Rosa canina plant be used against alkylating agents as a radical scavenger?, Pol J Environ Stud., 22 (2013) 1263-1267.
  • [16]. Lim Y.Y. and Quah E.P.L., Antioxidant properties of different cultivars of Portulaca oleracea, Food Chem., 103 (2007) 734–740.
  • [17]. Evans H.J., Cytological Methods for Detecting Chemical Mutagens. Chemical Mutagens: Principles and Methods for their Detection, Hollander, A (Ed), New York: Pleunum Press, 1976; pp 1-29.
  • [18]. Perry P.E. and Thomson E.J., The Methodology of Sister Chromatid Exchanges. Kilbey B.J., Legator M., Nichols W., Ramel C., (Eds). Handbook of Mutagenecity Test Procedures. 2nd ed. Amsterdam: Elsevier, 1984; pp 495-529.
  • [19]. Rooney D.E. and Czepulkowski B.H., Human Cytogenetics: A Practical Approach. Rooney D.E. and Czepulkowski B.H., (Eds). Volume II: Malignancy and Acquired Abnormalities 2nd ed. England: IRL Press Oxford, 1986; pp 224.
  • [20]. Kaymak G., Akbulut C., Esmer H.E., Kayhan F.E., Yön N.D., Sucul organizmalarda çevresel şartlara karşı geliştirilen oksidatif stress mekanizmaları ve adaptif yanıtlar, M.Ü. Fen Bilimleri Dergisi., 4 (2014) 154-169.
  • [21]. Berliocchi L., Bano D., Nicotera P., Ca+2 signals and death programmes in neurons, Phil Trans R Soc B., 360-1 (2005) 2255- 2258.
  • [22]. Stara A., Kristan J., Zuskova E., Velisek J., Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.), Pestic Biochem Physiol., 105-1 (2013) 18-23.
  • [23]. Giordano G., Afsharinejad Z., Guizzetti M., Vitalone A., Kavanagh T.J., Costa L.G., Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency, Toxicol Appl Pharmacol., 219 (2007) 181-189.
  • [24]. Banerjee B.D., Seth V., Ahmed R.S., Pesticide-induced oxidative stres: perspectives and trends, Rev Environ Health., 16 (2001) 1-40.
  • [25]. Hermes-Lima M., Zenteno-Savín T., Animal response to drastic changes in oxygen availability and physiological oxidative stress, Comp Biochem Phys C., 133 (2002) 537-56.
  • [26]. Arora R., Gupta D., Chawla R., Sagar R., Sharma A., Kumar R., Prasad J., Singh S., Samanta N., Sharma R.K., Radioprotection by plant products: present status and future prospects, Phytother Res., 19-1 (2005) 1-22.
  • [27]. Liu L., Howe P., Zhou Y.F., Xu Z.Q., Hocart C., Zhan R., Fatty acids and beta-carotene in australian purslane (Portulaca oleracea) varieties, J Chromatogr A., 893-1 (2000) 207-13.
  • [28]. Çoruh İ. ve Ercişli S., Semizotu (Portulaca oleracea L.): tıbbi ve aromatic amaçla kullanılan yenilebilir yabani bir bitki. An International Conference “Medicinal and Aromatic Plants in Generating of New Values in 21 Century”, Sarajevo. 2011.
  • [29]. Dkhil M.A., Moniem A.E.A., Al-Quraishy S., Saleh R.A., Antioxidant effect of purslane (Portulaca oleracea) and its mechanism of action, J Med Plant Res., 5-9 (2011) 1589-1563.
  • [30]. Uddin M.K., Juraimi A.S., Ali M.E., Ismail M.R., Evaluation of antioxidant properties and mineral composition of purslane (Portulaca oleracea L.) at different growth stages, Int J Mol Sci., 13-8 (2012) 10257–10267.
  • [31]. Behravan J., Mosafa F., Soudmand N., Taghiabadi E., Razavi B.M., Karimi G., Protective effects of aqueous and ethanolic extracts of Portulaca oleracea L. aerial parts on H2O2-induced DNA damage in lymphocytes by comet assay, J Acupunct Meridian Stud., 4-3 (2011) 193-197.
  • [32]. Yen G.C., Chen H.Y., Peng H.H., Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of emerging edible plants, Food Chem Toxicol., 39 (2001) 1045–1053.
  • [33]. Folkes L.K., Trujillo M., Bartesaghi S., Radi R., Wardman P., Kinetics of reduction of tyrosine phenoxl radicals by glutathione, Arch Biochem Biophys., 506 (2011) 242-249.
  • [34]. You Guo C., Jia S.Z., Ping C.X., Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides, Int J Biol Macromol., 45 (2009) 448–452.
  • [35]. Uysal H., Kızılet H., Ayar A., Taheri A., The use of endemic Iranian plant, Echium amoenum against the ethyl methanesulfonate and the recovery of mutagenic effects, Toxicol Ind Health., 31-1 (2015) 44-51.
  • [36]. Pereira D.G., Antunes L.M., Graf U., Spanó M.A., Protection by Panax ginseng CA Meyer against the genotoxicity of doxorubicin in somatic cells of D. melanogaster, Genet Mol Biol., 31-4 (2008) 947-955.
  • [37]. Ünver S., Bazı Neonikotinoid İnsektisitlerin Drosophila melanogaster’de Ömür Uzunluğu ile Asetilkolinesteraz Enzimi Üzerine Etkileri ve Olası Toksik Etkilerinin Çeşitli Bitki Ekstraktları Kullanılarak İyileştirilmesi Üzerine Araştırmalar, Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum. 2015.
  • [38]. Kasımoğlu C. and Uysal H., Mutagenic biomonitoring of pirethroid insecticides in human lymphocyte cultures: Use of micronuclei as biomarkers and recovery by Rosa canina extracts of mutagenic effects, Pharmaceut Biol., 53-5 (2014) 625-629.
  • [39]. Siddique Y., Ara G., Beg T., Afzal M., Anti-genotoxic effect of Ocimum sanctum L. extract against cyproterone acetate induced genotoxic damage in cultured mammalian cells, Biol., 58 (2007) 4-7.

Induced Genotoxicity in Human Lymphocytes by Neonicotinoids

Year 2018, , 201 - 210, 16.03.2018
https://doi.org/10.17776/csj.406158

Abstract

In this study, genotoxic effects of imidacloprid
(IMI) and acetamiprid (ASE) from neonicotinoid group insecticides were
investigated in the human peripheral lymphocyte cells with the Sister Chromatid
Exchange Test (SCE). Water and methanol extracts of Portulaca oleracea L. (Purslane) plant were used to eliminate the
possible genotoxic effects of these substances. IMI (50, 100, 250 and 500 ppm)
and ACE (25, 50, 100 and 250 ppm) insecticides were added to the culture medium
at different concentrations in order to determine the genotoxicity of the
insecticides. As a result, an increase in SCE frequency depending on the
increased concentration was observed in all treatment groups of both
insecticides (P<0,05). However, when the water (POwtr) and
methanol (POmet) extracts of the purslane plant were applied
together with the highest application groups of insecticides (IMI: 500 ppm and
ASE: 250 ppm) (1:1/v:v), the frequency of SCE decreased and found to be
statistically significant (P<0,05). According to these findings, the
increase in sister chromatite exchange was considered as a sign of damage to
the genetic material. In addition, the reduction of these damages with POwtr
and POmet also indicated that the purslane may be an antigenotoxic
agent.

References

  • [1]. Türkiye istatistik kurumu resmi sitesi, TÜİK. Adres: http://www.tuik.gov.tr Retrived April 12, 2017.
  • [2]. Demircan V. ve Yılmaz H., Isparta ili elma üretiminde tarımsal ilaç kullanımının çevresel duyarlılık ve ekonomik açıdan analizi, Ekoloji., 57 (2005) 15-25.
  • [3]. Arslan N. ve Yılmaz G., Pestisit kirliliğinin azaltılmasında bitkisel bir kaynak pireotu (Pyrethrum sp.) türleri, Ekoloji., 6 (1993) 3-6.
  • [4]. Greene S.A. and Pohanish R.P., Sittig’s Handbook of Pesticides and Agricultural Chemicals, 2nd edition NY, Norwich, 2005; pp 1189.
  • [5]. Jeschke P., Nauen R., Schindler M., Elbert A., Overview of the status and global strategy for neonicotinoids, J Agr Food Chem., 59 (2011) 2897-2908.
  • [6]. Tomizawa M. and Yamamoto I., Structure-activity relationships of nicotinoids and imidacloprid analogs, J Pesticide Sci., 18-1 (1993) 91-98.
  • [7]. Yücer M.M., Ruhsatlı Tarım İlaçları, İstanbul: Hasad Yayıncılık, 2012.
  • [8]. Zang Y., Zhong Y., Luo Y. Kong Z.M., Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida, Environ Pollut., 108 (2000) 271-278.
  • [9]. All J., Lance K., Lohmeyer K., Ovicidal properties of leverage for bollworm in cotton, In Proc. Beltwide Cotton Conf., TN, Memphis, 2001.
  • [10]. Parrish M.D., Ayad H., Holmes K., Ovicidal Activity of Acetamiprid (Assail TM brand 70WP insecticide) on Economic Pests of Cotton, In Proc. Beltwide Cotton Conf., TN, Memphis, 2001.
  • [11]. Lucero L., Pastor S., Suárez S., Durbán R., Gómez C., Parrón T., Creus A., Marcos R., Cytogenetic biomonitoring of Spanish greenhouse workers exposed to pesticides: micronuclei analysis in peripheral blood lymphocytes and buccal epithelial cells, Mutat Res., 464 (2000) 255-262.
  • [12]. Yavuz Kocaman A., Acetamiprid ve Alpha-cypermethrin Pestisidlerinin Tek Başına ve Karışım Halinde Kullanıldıkları Zaman İnsan Periferal Lenfositlerindeki İn Vitro Genotoksik Etkileri, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana. 2007.
  • [13]. Feng S., Kong Z., Wang X., Zhao L., Peng P., Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell, Chemosphere., 56-5 (2004) 457-63.
  • [14]. Plazar J., Filipic M., Groothuis G.M., Antigenotoxic effect of xanthohumol in rat liver slices, Toxicol in vitro., 22 (2008) 318-327.
  • [15]. Kızılet H., Kasımoğlu C., Uysal H., Can the Rosa canina plant be used against alkylating agents as a radical scavenger?, Pol J Environ Stud., 22 (2013) 1263-1267.
  • [16]. Lim Y.Y. and Quah E.P.L., Antioxidant properties of different cultivars of Portulaca oleracea, Food Chem., 103 (2007) 734–740.
  • [17]. Evans H.J., Cytological Methods for Detecting Chemical Mutagens. Chemical Mutagens: Principles and Methods for their Detection, Hollander, A (Ed), New York: Pleunum Press, 1976; pp 1-29.
  • [18]. Perry P.E. and Thomson E.J., The Methodology of Sister Chromatid Exchanges. Kilbey B.J., Legator M., Nichols W., Ramel C., (Eds). Handbook of Mutagenecity Test Procedures. 2nd ed. Amsterdam: Elsevier, 1984; pp 495-529.
  • [19]. Rooney D.E. and Czepulkowski B.H., Human Cytogenetics: A Practical Approach. Rooney D.E. and Czepulkowski B.H., (Eds). Volume II: Malignancy and Acquired Abnormalities 2nd ed. England: IRL Press Oxford, 1986; pp 224.
  • [20]. Kaymak G., Akbulut C., Esmer H.E., Kayhan F.E., Yön N.D., Sucul organizmalarda çevresel şartlara karşı geliştirilen oksidatif stress mekanizmaları ve adaptif yanıtlar, M.Ü. Fen Bilimleri Dergisi., 4 (2014) 154-169.
  • [21]. Berliocchi L., Bano D., Nicotera P., Ca+2 signals and death programmes in neurons, Phil Trans R Soc B., 360-1 (2005) 2255- 2258.
  • [22]. Stara A., Kristan J., Zuskova E., Velisek J., Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.), Pestic Biochem Physiol., 105-1 (2013) 18-23.
  • [23]. Giordano G., Afsharinejad Z., Guizzetti M., Vitalone A., Kavanagh T.J., Costa L.G., Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency, Toxicol Appl Pharmacol., 219 (2007) 181-189.
  • [24]. Banerjee B.D., Seth V., Ahmed R.S., Pesticide-induced oxidative stres: perspectives and trends, Rev Environ Health., 16 (2001) 1-40.
  • [25]. Hermes-Lima M., Zenteno-Savín T., Animal response to drastic changes in oxygen availability and physiological oxidative stress, Comp Biochem Phys C., 133 (2002) 537-56.
  • [26]. Arora R., Gupta D., Chawla R., Sagar R., Sharma A., Kumar R., Prasad J., Singh S., Samanta N., Sharma R.K., Radioprotection by plant products: present status and future prospects, Phytother Res., 19-1 (2005) 1-22.
  • [27]. Liu L., Howe P., Zhou Y.F., Xu Z.Q., Hocart C., Zhan R., Fatty acids and beta-carotene in australian purslane (Portulaca oleracea) varieties, J Chromatogr A., 893-1 (2000) 207-13.
  • [28]. Çoruh İ. ve Ercişli S., Semizotu (Portulaca oleracea L.): tıbbi ve aromatic amaçla kullanılan yenilebilir yabani bir bitki. An International Conference “Medicinal and Aromatic Plants in Generating of New Values in 21 Century”, Sarajevo. 2011.
  • [29]. Dkhil M.A., Moniem A.E.A., Al-Quraishy S., Saleh R.A., Antioxidant effect of purslane (Portulaca oleracea) and its mechanism of action, J Med Plant Res., 5-9 (2011) 1589-1563.
  • [30]. Uddin M.K., Juraimi A.S., Ali M.E., Ismail M.R., Evaluation of antioxidant properties and mineral composition of purslane (Portulaca oleracea L.) at different growth stages, Int J Mol Sci., 13-8 (2012) 10257–10267.
  • [31]. Behravan J., Mosafa F., Soudmand N., Taghiabadi E., Razavi B.M., Karimi G., Protective effects of aqueous and ethanolic extracts of Portulaca oleracea L. aerial parts on H2O2-induced DNA damage in lymphocytes by comet assay, J Acupunct Meridian Stud., 4-3 (2011) 193-197.
  • [32]. Yen G.C., Chen H.Y., Peng H.H., Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of emerging edible plants, Food Chem Toxicol., 39 (2001) 1045–1053.
  • [33]. Folkes L.K., Trujillo M., Bartesaghi S., Radi R., Wardman P., Kinetics of reduction of tyrosine phenoxl radicals by glutathione, Arch Biochem Biophys., 506 (2011) 242-249.
  • [34]. You Guo C., Jia S.Z., Ping C.X., Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides, Int J Biol Macromol., 45 (2009) 448–452.
  • [35]. Uysal H., Kızılet H., Ayar A., Taheri A., The use of endemic Iranian plant, Echium amoenum against the ethyl methanesulfonate and the recovery of mutagenic effects, Toxicol Ind Health., 31-1 (2015) 44-51.
  • [36]. Pereira D.G., Antunes L.M., Graf U., Spanó M.A., Protection by Panax ginseng CA Meyer against the genotoxicity of doxorubicin in somatic cells of D. melanogaster, Genet Mol Biol., 31-4 (2008) 947-955.
  • [37]. Ünver S., Bazı Neonikotinoid İnsektisitlerin Drosophila melanogaster’de Ömür Uzunluğu ile Asetilkolinesteraz Enzimi Üzerine Etkileri ve Olası Toksik Etkilerinin Çeşitli Bitki Ekstraktları Kullanılarak İyileştirilmesi Üzerine Araştırmalar, Yüksek Lisans Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum. 2015.
  • [38]. Kasımoğlu C. and Uysal H., Mutagenic biomonitoring of pirethroid insecticides in human lymphocyte cultures: Use of micronuclei as biomarkers and recovery by Rosa canina extracts of mutagenic effects, Pharmaceut Biol., 53-5 (2014) 625-629.
  • [39]. Siddique Y., Ara G., Beg T., Afzal M., Anti-genotoxic effect of Ocimum sanctum L. extract against cyproterone acetate induced genotoxic damage in cultured mammalian cells, Biol., 58 (2007) 4-7.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Natural Sciences
Authors

Halit Kızılet

Handan Uysal

Publication Date March 16, 2018
Submission Date May 22, 2017
Acceptance Date November 21, 2017
Published in Issue Year 2018

Cite

APA Kızılet, H., & Uysal, H. (2018). Neonikotinoidler ile İnsan Lenfositlerinde Genotoksisitenin Uyarılması. Cumhuriyet Science Journal, 39(1), 201-210. https://doi.org/10.17776/csj.406158