Research Article
BibTex RIS Cite

Plazma Poli(etilen oksit) Filmlerin Dielektrik Kaybının Kalınlığa Bağlılığı

Year 2018, , 366 - 374, 29.06.2018
https://doi.org/10.17776/csj.399267

Abstract

Plazma poli (etilen oksit) (pPEO) ince film
örneklerinin dielektrik özellikleri oda sıcaklığında incelendi. Farklı
kalınlıklardaki ince film örnekleri, 5 W plazma boşaltma gücünde plazma
destekli fiziksel buhar depozisyonu 
(PAPVD) tekniği ile elde edildi. Film kalınlıkları 20, 100, 250, 500
nm’dir.  Artan film kalınlığı ile
dielektrik sabitinin arttığı gözlenmiştir. Dielektrik kayıp ve frekans ilişkisi
ile belirlenen relaksasyon zamanları, artan kalınlık ile daha yüksek
frekanslara kaymaktadır. Film kalınlığına ilaveten, ısıtma süreçleri bir diğer
parametre olarak tanımlandı. Bu amaçla, ince film örnekleri sırasıyla ısıtılmış
ve soğutulmuştur.  Soğutma sürecindeki
dielektrik kaybın maksimum ve minimumunun, ısıtma sürecindeki maksimum ve
minimumunun belirlendiği frekanslardan daha alçak frekanslarda meydana geldiği
gözlenmiştir. Bu sonuçlar, daha ince filmlerde
ölü tabakanın etkisini gösterebilir. Isıtma sürecinden sonra, dielektrik sabiti
ve dielektrik kayıp davranışından, çapraz bağlanma yoğunluğunun ısıtma
etkisiyle arttığı gözlenmiştir. Bu etki PAPVD'nin ürünü olan serbest radikaller
arasında ek tepkimelere neden olabilir. Ayrıca dinamik camsı geçiş sıcaklıkları
hesaplandı. Bu sıcaklıklar ölü tabaka yaklaşımı etkisini ispatlamaktadır.

References

  • [1]. S. Diaham, M.L. Locatelli, T. Lebey, S. Dinculescu, Dielectric measurements in large frequency and temperature ranges of an aromatic polymer, Eur. Phys. J. Appl. Phys. 49 (2010) 10401 1-7.
  • [2]. E. Neagu, P. Pissis, L. Apekis, J. L. G. Ribelles, Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films, J. Phys. D: Appl. Phys. 30 (1997) 1551–1560.
  • [3]. N. Gondaliya, D. K. Kanchan, P. Sharma, M. S. Jayswal, M. Pant, Conductivity and dielectric behavior of AgCF3SO3 doped PEO polymer films, Integrated Ferroelectrics 119 (2010) 1–12.
  • [4]. P. Saxena, M. S. Gaur, P. Shukla, P. K. Khare, Relaxation investigations in polysulfone: Thermally stimulated discharge current and dielectric spectroscopy, Journal of Electrostatics 66 (2008) 584–588.
  • [5]. A. A. Hashim in Polymer Thin Films, A A Hashim, Eds., In-The, Vukovar, Croatia 2010, p1-4.
  • [6]. S. Islam, G. B. V. S. Lakshmi, A. M. Siddiqui, M. Husain, M. Zulfequar, Synthesis, electrical conductivity and dielectric behavior of polyaniline/V2O5 composites, International Journal of Polymer Science Volume Article ID 307525 (2013) 7 pages.
  • [7]. S. Saravanan, C. J. Mathai, S. Venkatachalam, M. R. Anantharaman, Low k thin films based on RF plasma-polymerized aniline, New Journal of Physics 6 (2004) 64.
  • [8]. A. Choukourov, I. Gordeev, O. Polonskyi, A. Artemenko, L. Hanykova, I. Krakovsky, O. Kylian, D. Slavinska, H. Biederman, Polyethylene (ethylene oxide)-like plasma polymers produced by plasma-assisted vacuum evaporation, Plasma Process. Polym. 7 (2010) 445–458.
  • [9]. C. J. Mathai, S. Saravanan, M. R. Anantharaman, S. Venkitachalam, S. Jayalekshmi, Characterization of low dielectric constant polyaniline thin film synthesized by ac plasma polymerization technique, J. Phys. D: Appl. Phys. 35 (2002) 240–245.
  • [10]. T. Afroze, A. H. Bhuiyan, Alternating current electrical properties of thin films of plasma polymerized 1, 1, 3, 3-tetramethoxypropane, Advances in Polymer Technology, 33 (2014) 1-4.
  • [11]. D. S. Kumar, Y. Yoshida, Dielectric properties of plasma polymerized pyrrole thin film capacitors, Surface and Coatings Technology 169 –170 (2003) 600–603.
  • [12]. F. U. Z. Chowdhury, A. H. Bhuiyan, Dielectric properties of plasma-polymerized diphenyl thin films, Thin Solid Films 370 (2000) 78-84.
  • [13]. X. Y. Zhao, M. Z. Wang, Z. Wang, Deposition of plasma-polymerized 1-cyanoisoquinoline thin films and their dielectric properties, Plasma Process. Polym. 4 (2007) 840–846.
  • [14]. H. Jiang, L. Hong, N. Venkatasubramanian, J. T. Grant, K. Eyink, K. Wiacek, S. Fries-Carr, J. Enlow, T. J. Bunning, The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films, Thin Solid Films 515 (2007) 3513–3520.
  • [15]. A. Choukourov, A. Grinevich, O. Polonskyi, J. Hanus, J. Kousal, D. Slavinska, H. Biederman, Vacuum Thermal Degradation of Poly(ethylene oxide), Journal of Physical Chemistry B, 113 (2009) 2984–2989.
  • [16]. C. Changrok, O.C. Kun, J. Donggeun, W.M. Dae, G.L. Tae, Surface characterization of plasma-polymerized polyethylene glycol thin film modified by plasma treatment, Surface and Interface Analysis: 45 (2013) 220–224.
  • [17]. B. Sannakki and Anita, Dielectric Properties of PMMA and its composites with ZrO2, Physics Procedia, 49 (2013) 15 – 26.
  • [18]. A.P. Singh, Y.P. Singh, Dielectric behavior of CoCu3Ti4O12:Poly Vivyl Chloride ceramic polymer composites at different temperature and frequencies, Modern Electronic Materials, 2 (2016) 121-126.
  • [19]. D. Değer ve K. Ulutaş, Conduction and Dielectric polarization in Se Thin Films, Vacuum, 72 (2004) 307- 312.
  • [20]. K. Se, K. Adachi, T. Kotaka, Dielectric Relaxations in Poly (ethyleneoxide): Dependence on Molecular Weight, Polymer Journal, 13 (1981) 1009-1017.
  • [21]. E. Sardella, R. Gristina, G.S. Senesi, R. d’Agostino, P. Favia, Homogeneous and Micro-Patterned Plasma-Deposited PEO-Like Coatings for Biomedical Surfaces, Plasma Processes and Polymers, 1 (2004) 63–72.
  • [22]. Y.J. Wu, R.B. Timmons, J.S. Jen, F.E. Molock, Non-fouling surfaces produced bygas phase pulsed plasma polymerization of an ultralow molecular weight ethylene oxide containing monomer, Colloids and Surfaces B:Biointerfaces, 18 (2000) 235–248.
  • [23]. K.E. Bremmell, P. Kingshott, Z. Ademovic, B. Winther-Jensen, H.J. Griesser, Colloid Probe AFM Investigation of Interactions between Fibrinogen and PEG-Like Plasma Polymer Surfaces, Langmuir, 22 (2006) 313-318.
  • [24]. F. Palumbo, Favia, M. Vulpio, R. d’Agostino, RF Plasma Deposition of PEO-Like Films: Diagnostics and Process Control, Plasmas and Polymers, 6 (3) (2001) 163-174.
  • [25]. Ş. Yakut, K. Ulutaş, I. Melnichuk, A. Choukourov, H. Biederman, D. Değer, Dielectric properties of plasma polymerized poly(ethylene oxide) thin films, Thin Solid Films, 616 (2016) 279-286.
  • [26]. S. Yakut, K. Ulutas, D. Deger, Plasma discharge power dependent AC conductivity of plasma poly(ethylene oxide) thin films, Thin Solid Films, 645 (2018) 269-277.
  • [27]. D. Prevosto, S. Napolitano, P. Pingue, S. Capaccioli, and M. Lucchesi, Investigation of structural relaxationand surface modification of ultrathin filmsof poly(ethylene terephthalate), European Physical Journal-Special Topics, 141 (2007) 193-198.
  • [28]. S. Napolitano, D. Prevosto, M. Lucchesi, P. Pingue, M. D’Acunto, and P. Rolla, Influence of a Reduced Mobility Layer on the Structural Relaxation Dynamics of Aluminum Capped Ultrathin Films of Poly (ethyleneterephthalate), Langmuir, 23 (2007) 2103-2109

Thickness Dependent Dielectric Loss of Plasma Poly (Ethylene Oxide) Films

Year 2018, , 366 - 374, 29.06.2018
https://doi.org/10.17776/csj.399267

Abstract

Dielectric properties of plasma poly (ethylene
oxide) (pPEO) thin film samples were investigated at room temperature. The thin
film samples with different thicknesses were deposited by plasma assisted
physical vapor deposition (PAPVD) technique at 5 W plasma discharge power. The
thicknesses were 20, 100, 250, 500 nm. It was observed that dielectric constant
increases with increasing thickness. The relaxation times determined by
dielectric loss-frequency relation, shift toward higher frequencies with
increasing thickness. In addition film thickness, heating processes were
defined as another parameter. By this purpose, thin film samples were heated
and cooled, respectively. It was observed that maxima and minima of dielectric
loss at cooling process take place at lower frequencies in comparison with
frequencies at which maxima and minima were detected at heating process. These
results may show the effect of dead layer at thinner films. After heating
process, it was observed from behavior of dielectric constant and dielectric
loss that the crosslinking density increases by heating effect. This effect may
cause additional reactions between free radicals which are production of PAPVD.
Moreover, dynamic glass transition temperatures were calculated. These
temperatures prove the effect of dead layer approximation.

References

  • [1]. S. Diaham, M.L. Locatelli, T. Lebey, S. Dinculescu, Dielectric measurements in large frequency and temperature ranges of an aromatic polymer, Eur. Phys. J. Appl. Phys. 49 (2010) 10401 1-7.
  • [2]. E. Neagu, P. Pissis, L. Apekis, J. L. G. Ribelles, Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films, J. Phys. D: Appl. Phys. 30 (1997) 1551–1560.
  • [3]. N. Gondaliya, D. K. Kanchan, P. Sharma, M. S. Jayswal, M. Pant, Conductivity and dielectric behavior of AgCF3SO3 doped PEO polymer films, Integrated Ferroelectrics 119 (2010) 1–12.
  • [4]. P. Saxena, M. S. Gaur, P. Shukla, P. K. Khare, Relaxation investigations in polysulfone: Thermally stimulated discharge current and dielectric spectroscopy, Journal of Electrostatics 66 (2008) 584–588.
  • [5]. A. A. Hashim in Polymer Thin Films, A A Hashim, Eds., In-The, Vukovar, Croatia 2010, p1-4.
  • [6]. S. Islam, G. B. V. S. Lakshmi, A. M. Siddiqui, M. Husain, M. Zulfequar, Synthesis, electrical conductivity and dielectric behavior of polyaniline/V2O5 composites, International Journal of Polymer Science Volume Article ID 307525 (2013) 7 pages.
  • [7]. S. Saravanan, C. J. Mathai, S. Venkatachalam, M. R. Anantharaman, Low k thin films based on RF plasma-polymerized aniline, New Journal of Physics 6 (2004) 64.
  • [8]. A. Choukourov, I. Gordeev, O. Polonskyi, A. Artemenko, L. Hanykova, I. Krakovsky, O. Kylian, D. Slavinska, H. Biederman, Polyethylene (ethylene oxide)-like plasma polymers produced by plasma-assisted vacuum evaporation, Plasma Process. Polym. 7 (2010) 445–458.
  • [9]. C. J. Mathai, S. Saravanan, M. R. Anantharaman, S. Venkitachalam, S. Jayalekshmi, Characterization of low dielectric constant polyaniline thin film synthesized by ac plasma polymerization technique, J. Phys. D: Appl. Phys. 35 (2002) 240–245.
  • [10]. T. Afroze, A. H. Bhuiyan, Alternating current electrical properties of thin films of plasma polymerized 1, 1, 3, 3-tetramethoxypropane, Advances in Polymer Technology, 33 (2014) 1-4.
  • [11]. D. S. Kumar, Y. Yoshida, Dielectric properties of plasma polymerized pyrrole thin film capacitors, Surface and Coatings Technology 169 –170 (2003) 600–603.
  • [12]. F. U. Z. Chowdhury, A. H. Bhuiyan, Dielectric properties of plasma-polymerized diphenyl thin films, Thin Solid Films 370 (2000) 78-84.
  • [13]. X. Y. Zhao, M. Z. Wang, Z. Wang, Deposition of plasma-polymerized 1-cyanoisoquinoline thin films and their dielectric properties, Plasma Process. Polym. 4 (2007) 840–846.
  • [14]. H. Jiang, L. Hong, N. Venkatasubramanian, J. T. Grant, K. Eyink, K. Wiacek, S. Fries-Carr, J. Enlow, T. J. Bunning, The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films, Thin Solid Films 515 (2007) 3513–3520.
  • [15]. A. Choukourov, A. Grinevich, O. Polonskyi, J. Hanus, J. Kousal, D. Slavinska, H. Biederman, Vacuum Thermal Degradation of Poly(ethylene oxide), Journal of Physical Chemistry B, 113 (2009) 2984–2989.
  • [16]. C. Changrok, O.C. Kun, J. Donggeun, W.M. Dae, G.L. Tae, Surface characterization of plasma-polymerized polyethylene glycol thin film modified by plasma treatment, Surface and Interface Analysis: 45 (2013) 220–224.
  • [17]. B. Sannakki and Anita, Dielectric Properties of PMMA and its composites with ZrO2, Physics Procedia, 49 (2013) 15 – 26.
  • [18]. A.P. Singh, Y.P. Singh, Dielectric behavior of CoCu3Ti4O12:Poly Vivyl Chloride ceramic polymer composites at different temperature and frequencies, Modern Electronic Materials, 2 (2016) 121-126.
  • [19]. D. Değer ve K. Ulutaş, Conduction and Dielectric polarization in Se Thin Films, Vacuum, 72 (2004) 307- 312.
  • [20]. K. Se, K. Adachi, T. Kotaka, Dielectric Relaxations in Poly (ethyleneoxide): Dependence on Molecular Weight, Polymer Journal, 13 (1981) 1009-1017.
  • [21]. E. Sardella, R. Gristina, G.S. Senesi, R. d’Agostino, P. Favia, Homogeneous and Micro-Patterned Plasma-Deposited PEO-Like Coatings for Biomedical Surfaces, Plasma Processes and Polymers, 1 (2004) 63–72.
  • [22]. Y.J. Wu, R.B. Timmons, J.S. Jen, F.E. Molock, Non-fouling surfaces produced bygas phase pulsed plasma polymerization of an ultralow molecular weight ethylene oxide containing monomer, Colloids and Surfaces B:Biointerfaces, 18 (2000) 235–248.
  • [23]. K.E. Bremmell, P. Kingshott, Z. Ademovic, B. Winther-Jensen, H.J. Griesser, Colloid Probe AFM Investigation of Interactions between Fibrinogen and PEG-Like Plasma Polymer Surfaces, Langmuir, 22 (2006) 313-318.
  • [24]. F. Palumbo, Favia, M. Vulpio, R. d’Agostino, RF Plasma Deposition of PEO-Like Films: Diagnostics and Process Control, Plasmas and Polymers, 6 (3) (2001) 163-174.
  • [25]. Ş. Yakut, K. Ulutaş, I. Melnichuk, A. Choukourov, H. Biederman, D. Değer, Dielectric properties of plasma polymerized poly(ethylene oxide) thin films, Thin Solid Films, 616 (2016) 279-286.
  • [26]. S. Yakut, K. Ulutas, D. Deger, Plasma discharge power dependent AC conductivity of plasma poly(ethylene oxide) thin films, Thin Solid Films, 645 (2018) 269-277.
  • [27]. D. Prevosto, S. Napolitano, P. Pingue, S. Capaccioli, and M. Lucchesi, Investigation of structural relaxationand surface modification of ultrathin filmsof poly(ethylene terephthalate), European Physical Journal-Special Topics, 141 (2007) 193-198.
  • [28]. S. Napolitano, D. Prevosto, M. Lucchesi, P. Pingue, M. D’Acunto, and P. Rolla, Influence of a Reduced Mobility Layer on the Structural Relaxation Dynamics of Aluminum Capped Ultrathin Films of Poly (ethyleneterephthalate), Langmuir, 23 (2007) 2103-2109
There are 28 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Hulusi Kemal Ulutaş

Publication Date June 29, 2018
Submission Date February 27, 2018
Acceptance Date March 30, 2018
Published in Issue Year 2018

Cite

APA Ulutaş, H. K. (2018). Thickness Dependent Dielectric Loss of Plasma Poly (Ethylene Oxide) Films. Cumhuriyet Science Journal, 39(2), 366-374. https://doi.org/10.17776/csj.399267