Sınır Koşulunda bir Özdeğer Parametre Bulunan bir Fuzzy Sınır Değer Problemi Üzerine
Year 2019,
Volume: 40 Issue: 1, 1 - 10, 22.03.2019
Hülya Gültekin Çitil
Abstract
Bu çalışmada sınır
koşulunda bir özdeğer parametre içeren bir fuzzy sınır değer problemi
araştırıldı. Bu araştırma Hukuhara diferansiyellenebilirlik yaklaşımı altında
yapıldı. Sınır koşulundaki özdeğer parametrenin problemin özdeğer ve
özfonksiyonu üzerindeki etkisi gösterildi.
References
-
[1]. Bede B., Gal S.G., Almost periodic fuzzy-number-valued functions. Fuzzy Sets and Systems, 147 (2004) 385- 403.
-
[2]. Bede B., Gal S.G., Generalizations of the differentibility of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151 (2005) 581-599.
-
[3]. Bede B., Rudas I.J., Bencsik A.L. First order linear fuzzy differential equations under generalized differentiability. Inform. Sci., 177 (2007) 1648-1662.
-
[4]. Buckey J.J., Feuring T., Fuzzy differential equations. Fuzzy Sets and Systems, 110 (2000) 43-54.
-
[5]. Chalco-Cano Y., Roman-Flores H., On new solutions of fuzzy differential equations. Chaos, Solitons & Fractals, 38 (2008) 112-119.
-
[6]. Fard O.S., Esfahani A., Kamyad A.V., On Solution Of A Class Of Fuzzy BVPs. Iranian of Fuzzy Systems, 9(1) (2012) 49-60.
-
[7]. Gasilov N.A., Amrahov A.G., Fatullayev A.G., A geometric approach to solve fuzzy linear systems of differential equations. Appl. Math. Inf. Sci., 5 (2011) 484-495.
-
[8]. Gültekin H., Altınışık N., On solution of two-point fuzzy boundary value problems. Bulletin of Society
for Mathematical Services & Standarts, 3(2) (2014) 43-53.
-
[9]. Gültekin Çitil H., Altınışık N., On the Eigenvalues and the Eigenfunctions Of The Sturm- Liouville Fuzzy
Boundary Value Problem. Journal of Mathematical and Computational Science, 7(4) (2017) 786-805.
-
[10]. Kaleva O., Fuzzy differential equations. Fuzzy Sets and Systems, 24 (1987) 301-317.
-
[11]. Khastan A., Bahrami F., Ivaz K., New Results on Multiple Solutions for Nth-order Fuzzy Differential
Equations under Generalized Differentiability. Boundary Value Problems, 2009; doi:10.1155/395714.
-
[12]. Khastan A., Nieto J.J., A boundary value problem for second order fuzzy differential equations.
Nonlinear Analysis, 72 (2010) 3583-3593.
-
[13]. Liu H.K., Comparations results of two-point fuzzy boundary value problems. International Journal of
Computational and Mathematical Sciences, 5(1) (2011) 1-7.
-
[14]. Nieto J.J., Khastan A., Ivaz K., Numerical solution of fuzzy differential equations under generalized
differentiability. Nonlinear Anal. Hybrid Syst., 3 (2009) 700-707.
On a Fuzzy Boundary Value Problem with an Eigenvalue Parameter Contained in the Boundary Condition
Year 2019,
Volume: 40 Issue: 1, 1 - 10, 22.03.2019
Hülya Gültekin Çitil
Abstract
A fuzzy boundary value problem with an
eigenvalue parameter contained in the boundary condition is investigated in
this paper. The examination is made under the approach of Hukuhara
differentiability. The effect on the eigenvalue and the eigenfunction of the
problem of the eigenvalue in the boundary condition is shown.
References
-
[1]. Bede B., Gal S.G., Almost periodic fuzzy-number-valued functions. Fuzzy Sets and Systems, 147 (2004) 385- 403.
-
[2]. Bede B., Gal S.G., Generalizations of the differentibility of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151 (2005) 581-599.
-
[3]. Bede B., Rudas I.J., Bencsik A.L. First order linear fuzzy differential equations under generalized differentiability. Inform. Sci., 177 (2007) 1648-1662.
-
[4]. Buckey J.J., Feuring T., Fuzzy differential equations. Fuzzy Sets and Systems, 110 (2000) 43-54.
-
[5]. Chalco-Cano Y., Roman-Flores H., On new solutions of fuzzy differential equations. Chaos, Solitons & Fractals, 38 (2008) 112-119.
-
[6]. Fard O.S., Esfahani A., Kamyad A.V., On Solution Of A Class Of Fuzzy BVPs. Iranian of Fuzzy Systems, 9(1) (2012) 49-60.
-
[7]. Gasilov N.A., Amrahov A.G., Fatullayev A.G., A geometric approach to solve fuzzy linear systems of differential equations. Appl. Math. Inf. Sci., 5 (2011) 484-495.
-
[8]. Gültekin H., Altınışık N., On solution of two-point fuzzy boundary value problems. Bulletin of Society
for Mathematical Services & Standarts, 3(2) (2014) 43-53.
-
[9]. Gültekin Çitil H., Altınışık N., On the Eigenvalues and the Eigenfunctions Of The Sturm- Liouville Fuzzy
Boundary Value Problem. Journal of Mathematical and Computational Science, 7(4) (2017) 786-805.
-
[10]. Kaleva O., Fuzzy differential equations. Fuzzy Sets and Systems, 24 (1987) 301-317.
-
[11]. Khastan A., Bahrami F., Ivaz K., New Results on Multiple Solutions for Nth-order Fuzzy Differential
Equations under Generalized Differentiability. Boundary Value Problems, 2009; doi:10.1155/395714.
-
[12]. Khastan A., Nieto J.J., A boundary value problem for second order fuzzy differential equations.
Nonlinear Analysis, 72 (2010) 3583-3593.
-
[13]. Liu H.K., Comparations results of two-point fuzzy boundary value problems. International Journal of
Computational and Mathematical Sciences, 5(1) (2011) 1-7.
-
[14]. Nieto J.J., Khastan A., Ivaz K., Numerical solution of fuzzy differential equations under generalized
differentiability. Nonlinear Anal. Hybrid Syst., 3 (2009) 700-707.