The Magnetic Anisotropy Effectiveness on NiFe2O4 and NiFe2O4@SiO2 Nanoparticles for Hyperthermia Applications
Year 2017,
, 193 - 205, 08.12.2017
Mustafa Coşkun
,
Senem Çitoğlu
Mustafa Korkmaz
Tezer Fırat
Abstract
In this study, we analyzed the
magneto-heating properties of NiFe2O4
nanoparticles, coated with a SiO2 shell for hyperthermia
applications. The NiFe2O4 nanoparticles were synthesized
and coated with SiO2 by chemical route and water in oil techniques,
respectively. The size of core particles is ~5.6±0.1 nm and the thicknesses of
the SiO2 layers around the core change from 0 nm to 14.1±0.1 nm by
increasing the amount of tetraethyl orthosilicate from 0 ml to 2.5 mL during
the synthesis process. The magnetic anisotropies, obtained from magnetic
susceptibility measurements have the same
behavior with the specific heat absorption ratio of the samples.
References
- [1]. Tang S.Q., Moon S.J., Park K. H., Paek S. H., Chung K. W., Bae S. Feasibility of TEOS Coated CoFe2O4 Nanoparticles to a GMR Biosensor Agent for Single Molecular Detection. Journal of nanoscience and nanotechnology, 2011; 11(1): 82-89.
- [2]. Pradhan P., Giri J., Samanta G., Sarma,H. D., Mishra K.P., Bellare J., ... & Bahadur D., Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. Journal of biomedical materials research Part B: Applied Biomaterials, 2007; 81(1): 12-22.
- [3]. Teja A.S., Koh P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials, 2009; 55(1): 22-45.
- [4]. Wu W., He Q., Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 2008; 3(11): 397-415.
- [5]. Jia C.J., Sun L.D., Luo F., Han X.D., Heyderman L.J., Yan Z.G., Hayashi N. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. Journal of the American Chemical Society, 2008; 130(50): 16968-16977.
- [6]. Fortin J.P., Wilhelm C., Servais J., Ménager C., Bacri J.C. Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society, 2007; 129(9): 2628-2635.
- [7]. Rogers W.J., Meyer C.H., Kramer C.M. Technology insight: in vivo cell tracking by use of MRI. Nature Clinical Practice Cardiovascular Medicine, 2006; 3(10): 554-562.
- [8]. Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005; 26(18): 3995-4021.
- [9]. Perez J.M., Josephson L., Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem, 2004; 5(3): 261-264.
- [10]. Jain T.K., Reddy M.K., Morales M.A., Leslie-Pelecky D.L., Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular pharmaceutics, 2008; 5(2): 316-327.
- [11]. Lee H., Lee E., Kim D.K., Jang N.K., Jeong Y.Y., Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. Journal of the American Chemical Society, 2006; 128(22): 7383-7389.
- [12]. Corot C., Robert P., Idée J.M., Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced drug delivery reviews, 2006; 58(14): 1471-1504.
- [13]. Jordan A., Scholz R., Wust P., Fähling H., Krause J., Wlodarczyk W., Felix R. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. International Journal of Hyperthermia, 1997; 13(6): 587-605.
- [14]. Laurent S., Dutz S., Häfeli U.O., Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science, 2011; 166(1): 8-23.
- [15]. Hergt R., Andra W., d'Ambly C. G., Hilger I., Kaiser W.A., Richter U., Schmidt H.G. Physical limits of hyperthermia using magnetite fine particles. IEEE Transactions on Magnetics, 1998; 34(5): 3745-3754.
- [16]. Suto M., Hirota Y., Mamiya H., Fujita A., Kasuya R., Tohji K., Jeyadevan B. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 2009; 321(10): 1493-1496.
- [17]. Rosensweig R. E., Heating magnetic fluid with alternating magnetic field. Journal of magnetism and magnetic materials, 2002; 252: 370-374.
- [18]. Xie Y., Liu D., Cai C., Chen X., Zhou Y., Wu L., ... & Liu P., Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. International journal of nanomedicine, 2016; 11: 3557.
- [19]. Hergt R., Dutz S., Müller R., & Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter, 2006; 18(38): S2919.
- [20]. Yanada T., Matsuki H., Takahashi M., Satoh T., Minakawa S., Kikuchi S., & Murakami K. Evaluation of temperature sensitive amorphous metal flakes for self-regulated hyperthermia. IEEE transactions on magnetics, 1991, 27(6), 5390-5392.
- [21]. Chen Z. P., Roemer R.B., Cetas T.C. Short communication: Errors in the two-dimensional simulation of ferromagnetic implant hyperthermia. International journal of hyperthermia, 1991; 7(5): 735-739.
- [22]. Apostolova I., Wesselinowa J.M. Possible low-TC nanoparticles for use in magnetic hyperthermia treatments. Solid State Communications, 2009; 149(25): 986-990.
- [23]. Molday R.S., Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of immunological methods, 1982; 52(3): 353-367.
- [24]. Maaz K., Karim S., Mumtaz A., Hasanain S. K., Liu J., Duan J.L. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. Journal of Magnetism and Magnetic Materials, 2009; 321(12): 1838-1842.
- [25]. Kim D.H., Nikles D.E., Johnson D.T., Brazel C.S. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. Journal of Magnetism and Magnetic Materials, 2008; 320(19): 2390-2396.
- [26]. Sanvicens N., Marco M.P. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends in biotechnology, 2008; 26(8): 425-433.
- [27]. Chen J.S., Chen C., Liu J., Xu R., Qiao S.Z., Lou X.W. Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chemical Communications, 2011; 47(9): 2631-2633.
- [28]. Vogt C., Toprak M.S., Muhammed M., Laurent S., Bridot J.L., Müller R.N. High quality and tuneable silica shell–magnetic core nanoparticles. Journal of nanoparticle research, 2010; 12(4): 1137-1147.
- [29]. Yi D. K., Lee S. S., Papaefthymiou G.C., Ying J.Y., Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials, 2006; 18(3): 614-619.
- [30]. Tang D., Yuan R., Chai Y., An H. Magnetic-Core/Porous-Shell CoFe2O4/SiO2 Composite Nanoparticles as Immobilized Affinity Supports for Clinical Immunoassays. Advanced Functional Materials, 2007; 17(6): 976-982.
- [31]. Yang H.T., Hasegawa D., Takahashi M., Ogawa T. Achieving a noninteracting magnetic nanoparticle system through direct control of interparticle spacing. Applied Physics Letters, 2009; 94(1): 013103.
- [32]. Caruntu D., Remond Y., Chou N. H., Jun M. J., Caruntu G., He J., ... & Kolesnichenko V., Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorganic chemistry, 2002; 41(23): 6137-6146.
- [33]. Caruntu D., Caruntu G., Chen Y., O'Connor C.J., Goloverda G., Kolesnichenko V.L. Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity. Chemistry of materials, 2004; 16(25): 5527-5534.
- [34]. Caruntu D., Caruntu G., & O'Connor C. J., Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. Journal of Physics D: Applied Physics, 2007; 40(19): 5801.
- [35]. Lee D.C., Mikulec F.V., Pelaez J.M., Koo B., Korgel B.A. Synthesis and magnetic properties of silica-coated FePt nanocrystals. The Journal of Physical Chemistry B, 2006; 110(23): 11160-11166.
- [36]. Murai K., Watanabe Y., Saito Y., Nakayama T., Suematsu H., Jiang W., ... & Niihara K., Preparation of copper nanoparticles with an organic coating by a pulsed wire discharge method. Journal of Ceramic Processing Research, 2007; 8(2): 114.
- [37]. Gneveckow U., Jordan A., Scholz R., Brüß V., Waldöfner N., Ricke J., ... & Wust P., Description and characterization of the novel hyperthermia and thermoablation system MFH® 300F for clinical magnetic fluid hyperthermia. Medical physics, 2004; 31(6): 1444-1451.
- [38]. Hergt R., Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials, 2007; 311(1): 187-192.
- [39]. Jordan A., Wust P., Fählin H., John W., Hinz A., Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia, 1993; 9(1): 51-68.
- [40]. Binder W.H., Weinstabl H.C. Surface-modified superparamagnetic iron-oxide nanoparticles. Monatshefte für Chemie-Chemical Monthly, 2007; 138(4): 315-320.
- [41]. Ayyappan S., Gnanaprakash G., Panneerselvam G., Antony M.P., Philip J. Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. The Journal of Physical Chemistry C, 2008; 112(47): 18376-18383.
- [42]. Zhao S.Y., Lee D.G., Kim C.W., Cha H.G., Kim Y.H., Kang Y.S. Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption. Bulletin of the Korean Chemical Society, 2006; 27(2): 237-242.
- [43]. Bodsworth C. The extraction and refining of metals (Vol. 2). CRC Press, 1994.
- [44]. Lévy M., Wilhelm C., Siaugue J.M., Horner O., Bacri J.C., Gazeau F.,Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. Journal of Physics: Condensed Matter, 2008; 20(20): 204133.
- [45]. Nedelkoski Z., Kepaptsoglou D., Lari L., Wen T., Booth, R.A., Oberdick, S.D.,..& Lazarov V.K. Origin of reduced magnetization and domain formation in small magnetite nanoparticles. Scientific Reports, 2017; 7:, 45997
- [46]. Martinez-Boubeta C., Simeonidis K., Makridis, A., Angelakeris, M., Iglesias, O., Guardia P., & Saghi Z., Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. Scientific Reports, 2013; 3: 1652.
- [47]. Botez C.E., Bhuiya, A.W., Tackett R.J. Dynamic-susceptibility studies of the interplay between the Néel and Brown magnetic relaxation mechanisms. Applied Physics A: Materials Science & Processing, 2011; 104(1): 177-181.
- [48]. López J.L., Pfannes H.D., Paniago R., Sinnecker J.P., Novak M.A. Investigation of the static and dynamic magnetic properties of CoFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2008; 320(14): e327-e330.
- [49]. Coşkun M., Korkmaz M., Fırat T., Jaffari, G., H., Shah, S.I. Synthesis of SiO2 coated NiFe2O4 nanoparticles and the effect of SiO2 shell thickness on the magnetic properties. Journal of Applied Physics, 2010; 107(9): 09B523.
- [50]. De la Presa P., Multigner M., Morales M. P., Rueda T., Fernandez-Pinel E., & Hernando A., Synthesis and characterization of FePt/Au core-shell nanoparticles. Journal of Magnetism and Magnetic Materials, 2007; 316(2): e753-e755.
- [51]. Sánchez J.H., Rinaldi C. Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in dc and ac magnetic fields. Journal of Magnetism and Magnetic Materials, 2009; 321(19): 2985-2991.
- [52]. Kumar C.S., Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced drug delivery reviews, 2011, 63(9), 789-808.
Hipertermi Uygulamaları İçin NiFe2O4 ve NiFe2O4@SiO2 Nanoparçacıklarının Manyetik Anizotropi Etkinliği
Year 2017,
, 193 - 205, 08.12.2017
Mustafa Coşkun
,
Senem Çitoğlu
Mustafa Korkmaz
Tezer Fırat
Abstract
Bu
çalışmada, hipertermi uygulamaları için SiO2 ile kaplanmış NiFe2O4
nanoparçacıklarının magnetik-ısıtma özellikleri analiz edildi. NiFe2O4
nanoparçacıkları kimyasal yöntemle sentezlenerek, mikroemülsiyon tekniğiyle SiO2
ile kaplandı. Çekirdek parçacıklarının boyutu 5.6 ± 0.1 nm'dir. Kaplama
sürecinde çekirdek çevresindeki SiO2 tabakasının kalınlıkları
tetraetil ortosilikat miktarı 0 mL'den 2.5 mL'ye arttırılarak 0 nm'den 14.1 ±
0.1 nm'ye kadar değiştirilmiştir. Manyetik duyarlılık ölçümlerinden elde edilen
manyetik anizotropi değerleri, spesifik ısı emme katsayıları ile benzer
davranışlar göstermiştir.
References
- [1]. Tang S.Q., Moon S.J., Park K. H., Paek S. H., Chung K. W., Bae S. Feasibility of TEOS Coated CoFe2O4 Nanoparticles to a GMR Biosensor Agent for Single Molecular Detection. Journal of nanoscience and nanotechnology, 2011; 11(1): 82-89.
- [2]. Pradhan P., Giri J., Samanta G., Sarma,H. D., Mishra K.P., Bellare J., ... & Bahadur D., Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. Journal of biomedical materials research Part B: Applied Biomaterials, 2007; 81(1): 12-22.
- [3]. Teja A.S., Koh P.Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials, 2009; 55(1): 22-45.
- [4]. Wu W., He Q., Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Research Letters, 2008; 3(11): 397-415.
- [5]. Jia C.J., Sun L.D., Luo F., Han X.D., Heyderman L.J., Yan Z.G., Hayashi N. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. Journal of the American Chemical Society, 2008; 130(50): 16968-16977.
- [6]. Fortin J.P., Wilhelm C., Servais J., Ménager C., Bacri J.C. Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society, 2007; 129(9): 2628-2635.
- [7]. Rogers W.J., Meyer C.H., Kramer C.M. Technology insight: in vivo cell tracking by use of MRI. Nature Clinical Practice Cardiovascular Medicine, 2006; 3(10): 554-562.
- [8]. Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005; 26(18): 3995-4021.
- [9]. Perez J.M., Josephson L., Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem, 2004; 5(3): 261-264.
- [10]. Jain T.K., Reddy M.K., Morales M.A., Leslie-Pelecky D.L., Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular pharmaceutics, 2008; 5(2): 316-327.
- [11]. Lee H., Lee E., Kim D.K., Jang N.K., Jeong Y.Y., Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. Journal of the American Chemical Society, 2006; 128(22): 7383-7389.
- [12]. Corot C., Robert P., Idée J.M., Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced drug delivery reviews, 2006; 58(14): 1471-1504.
- [13]. Jordan A., Scholz R., Wust P., Fähling H., Krause J., Wlodarczyk W., Felix R. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. International Journal of Hyperthermia, 1997; 13(6): 587-605.
- [14]. Laurent S., Dutz S., Häfeli U.O., Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science, 2011; 166(1): 8-23.
- [15]. Hergt R., Andra W., d'Ambly C. G., Hilger I., Kaiser W.A., Richter U., Schmidt H.G. Physical limits of hyperthermia using magnetite fine particles. IEEE Transactions on Magnetics, 1998; 34(5): 3745-3754.
- [16]. Suto M., Hirota Y., Mamiya H., Fujita A., Kasuya R., Tohji K., Jeyadevan B. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 2009; 321(10): 1493-1496.
- [17]. Rosensweig R. E., Heating magnetic fluid with alternating magnetic field. Journal of magnetism and magnetic materials, 2002; 252: 370-374.
- [18]. Xie Y., Liu D., Cai C., Chen X., Zhou Y., Wu L., ... & Liu P., Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. International journal of nanomedicine, 2016; 11: 3557.
- [19]. Hergt R., Dutz S., Müller R., & Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter, 2006; 18(38): S2919.
- [20]. Yanada T., Matsuki H., Takahashi M., Satoh T., Minakawa S., Kikuchi S., & Murakami K. Evaluation of temperature sensitive amorphous metal flakes for self-regulated hyperthermia. IEEE transactions on magnetics, 1991, 27(6), 5390-5392.
- [21]. Chen Z. P., Roemer R.B., Cetas T.C. Short communication: Errors in the two-dimensional simulation of ferromagnetic implant hyperthermia. International journal of hyperthermia, 1991; 7(5): 735-739.
- [22]. Apostolova I., Wesselinowa J.M. Possible low-TC nanoparticles for use in magnetic hyperthermia treatments. Solid State Communications, 2009; 149(25): 986-990.
- [23]. Molday R.S., Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. Journal of immunological methods, 1982; 52(3): 353-367.
- [24]. Maaz K., Karim S., Mumtaz A., Hasanain S. K., Liu J., Duan J.L. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. Journal of Magnetism and Magnetic Materials, 2009; 321(12): 1838-1842.
- [25]. Kim D.H., Nikles D.E., Johnson D.T., Brazel C.S. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. Journal of Magnetism and Magnetic Materials, 2008; 320(19): 2390-2396.
- [26]. Sanvicens N., Marco M.P. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends in biotechnology, 2008; 26(8): 425-433.
- [27]. Chen J.S., Chen C., Liu J., Xu R., Qiao S.Z., Lou X.W. Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chemical Communications, 2011; 47(9): 2631-2633.
- [28]. Vogt C., Toprak M.S., Muhammed M., Laurent S., Bridot J.L., Müller R.N. High quality and tuneable silica shell–magnetic core nanoparticles. Journal of nanoparticle research, 2010; 12(4): 1137-1147.
- [29]. Yi D. K., Lee S. S., Papaefthymiou G.C., Ying J.Y., Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chemistry of Materials, 2006; 18(3): 614-619.
- [30]. Tang D., Yuan R., Chai Y., An H. Magnetic-Core/Porous-Shell CoFe2O4/SiO2 Composite Nanoparticles as Immobilized Affinity Supports for Clinical Immunoassays. Advanced Functional Materials, 2007; 17(6): 976-982.
- [31]. Yang H.T., Hasegawa D., Takahashi M., Ogawa T. Achieving a noninteracting magnetic nanoparticle system through direct control of interparticle spacing. Applied Physics Letters, 2009; 94(1): 013103.
- [32]. Caruntu D., Remond Y., Chou N. H., Jun M. J., Caruntu G., He J., ... & Kolesnichenko V., Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorganic chemistry, 2002; 41(23): 6137-6146.
- [33]. Caruntu D., Caruntu G., Chen Y., O'Connor C.J., Goloverda G., Kolesnichenko V.L. Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity. Chemistry of materials, 2004; 16(25): 5527-5534.
- [34]. Caruntu D., Caruntu G., & O'Connor C. J., Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. Journal of Physics D: Applied Physics, 2007; 40(19): 5801.
- [35]. Lee D.C., Mikulec F.V., Pelaez J.M., Koo B., Korgel B.A. Synthesis and magnetic properties of silica-coated FePt nanocrystals. The Journal of Physical Chemistry B, 2006; 110(23): 11160-11166.
- [36]. Murai K., Watanabe Y., Saito Y., Nakayama T., Suematsu H., Jiang W., ... & Niihara K., Preparation of copper nanoparticles with an organic coating by a pulsed wire discharge method. Journal of Ceramic Processing Research, 2007; 8(2): 114.
- [37]. Gneveckow U., Jordan A., Scholz R., Brüß V., Waldöfner N., Ricke J., ... & Wust P., Description and characterization of the novel hyperthermia and thermoablation system MFH® 300F for clinical magnetic fluid hyperthermia. Medical physics, 2004; 31(6): 1444-1451.
- [38]. Hergt R., Dutz S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials, 2007; 311(1): 187-192.
- [39]. Jordan A., Wust P., Fählin H., John W., Hinz A., Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia, 1993; 9(1): 51-68.
- [40]. Binder W.H., Weinstabl H.C. Surface-modified superparamagnetic iron-oxide nanoparticles. Monatshefte für Chemie-Chemical Monthly, 2007; 138(4): 315-320.
- [41]. Ayyappan S., Gnanaprakash G., Panneerselvam G., Antony M.P., Philip J. Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. The Journal of Physical Chemistry C, 2008; 112(47): 18376-18383.
- [42]. Zhao S.Y., Lee D.G., Kim C.W., Cha H.G., Kim Y.H., Kang Y.S. Synthesis of magnetic nanoparticles of Fe3O4 and CoFe2O4 and their surface modification by surfactant adsorption. Bulletin of the Korean Chemical Society, 2006; 27(2): 237-242.
- [43]. Bodsworth C. The extraction and refining of metals (Vol. 2). CRC Press, 1994.
- [44]. Lévy M., Wilhelm C., Siaugue J.M., Horner O., Bacri J.C., Gazeau F.,Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. Journal of Physics: Condensed Matter, 2008; 20(20): 204133.
- [45]. Nedelkoski Z., Kepaptsoglou D., Lari L., Wen T., Booth, R.A., Oberdick, S.D.,..& Lazarov V.K. Origin of reduced magnetization and domain formation in small magnetite nanoparticles. Scientific Reports, 2017; 7:, 45997
- [46]. Martinez-Boubeta C., Simeonidis K., Makridis, A., Angelakeris, M., Iglesias, O., Guardia P., & Saghi Z., Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. Scientific Reports, 2013; 3: 1652.
- [47]. Botez C.E., Bhuiya, A.W., Tackett R.J. Dynamic-susceptibility studies of the interplay between the Néel and Brown magnetic relaxation mechanisms. Applied Physics A: Materials Science & Processing, 2011; 104(1): 177-181.
- [48]. López J.L., Pfannes H.D., Paniago R., Sinnecker J.P., Novak M.A. Investigation of the static and dynamic magnetic properties of CoFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2008; 320(14): e327-e330.
- [49]. Coşkun M., Korkmaz M., Fırat T., Jaffari, G., H., Shah, S.I. Synthesis of SiO2 coated NiFe2O4 nanoparticles and the effect of SiO2 shell thickness on the magnetic properties. Journal of Applied Physics, 2010; 107(9): 09B523.
- [50]. De la Presa P., Multigner M., Morales M. P., Rueda T., Fernandez-Pinel E., & Hernando A., Synthesis and characterization of FePt/Au core-shell nanoparticles. Journal of Magnetism and Magnetic Materials, 2007; 316(2): e753-e755.
- [51]. Sánchez J.H., Rinaldi C. Rotational Brownian dynamics simulations of non-interacting magnetized ellipsoidal particles in dc and ac magnetic fields. Journal of Magnetism and Magnetic Materials, 2009; 321(19): 2985-2991.
- [52]. Kumar C.S., Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced drug delivery reviews, 2011, 63(9), 789-808.