Conference Paper
BibTex RIS Cite

Coupled-Channel Analyses on 〖Ti〗^(46,48,50)+〖Sn〗^124 Heav-ion Fusion Reactions

Year 2018, , 463 - 468, 29.06.2018
https://doi.org/10.17776/csj.361383

Abstract

Heavy-ion
fusion near the Coulomb barrier attract experimental and theoretical interest.
The collisons are typically characterized by the presence of many open reaction
channels. In the energies around the Coulomb barrier, the processes are elastic
scattering, inelastic excitations and fusion operations of one or two nuclei.
The fusion process is defined as the effect of one-dimensional barrier
penetration model, taking scattering potential as the sum of Coulomb and
proximity potential. We have performed heay-ion fusion reactions with
coupled-channels (CC) calculations. CC formalism is carried out under barrier
energy in heavy- ion fusion reactions. In this work fusion cross sections have
been calculated and analyzed in detail for the three systems
 in the
framework of CC approach (using the codes CCFULL[16], CCFUS [17] and CCDEF [18])
. Calculated results are compared with experimental data, including excitation of the projectile and target to the
lowest
and states and with the datas computed from ‘nrv’. CCDEF, CCFULL
and ‘nrv’ explains the fusion reactions of heavy-ions very well. There is a
good agreement between the calculated results with the experimental and nrv
results [19].

References

  • [1] Takigawa N., Hagino K., Heavy Elements and Related New Phenomena, 1025.
  • [2] M. Beckerman, Sub-Barrier Fusion of Two Nuclei, Rep. Prog. Phys.51(1988) 1047; Phys. Rep., 129 (1985) 145.
  • [3] Balantekin A.B., Takigawa N., Quantum Tunnelin in Nuclear Physics, Rev. Mod. Phys., 70 (1998) 77.
  • [4] Santhosh K.P., Bobby Jose V., Heavy-Ion Fusion Ractions of 16O on Spherical/ Deformed 144-154Sm Targets Using Coulomb and Proximity Potentials, Romanian Reports in Phys., 66 (2014) 4, 939-951.
  • [5] G. H. Rawitscher, Nucl. Phys., A85 (1963) 337.
  • [6] Stokstad R. G., Gross E. E., Analysis of the Sub-Barrier fusion of 16O+148,150,152,154Sm, Phys. Rev. C23, (1981) 281.
  • [7] Lipperheide R., Rossner H., Massmann H., Calculation of Reaction and Fusion Cross Sections Using Angle-Dependent Phase Shifts, Nucl. Phys. A394 (1983) 312.
  • [8] Santhosh K. P., Bobby Jose V., Heavy- Ion Fusion Cross Sections of Weakly Bound 9Be on 27Al, 64Zn and Tightly Bound 16O on 64Zn Target Using Coulomb and Proximity Potentials, Nuclear Physics A, 922 (2014) 191-199.
  • [9] Tanimura O., Physical Review, C 35 (1998)4.
  • [10] Birkelund J. R., Tubbs L. E., Huizenga J. R., De J. N., Sperber, Heavy-Ion Fusion: Comparison of Experimental Data with Classical Trajectory Models, Phys. Rep., 56 (1979) 107.
  • [11] Canto L.F., Hussein M.S., Scattering Theory of Molecules, Atoms and Nuclei. World Scientific Publishing Co. Pte. Ltd. (2013)
  • [12] Toubiana A.J., Canto L.F., Hussein M.S., Approximate Transmission Coefficients in Heavy Ion Fusion, Braz J Phys., 47 (2017) 321–332.
  • [13] Dasgupta, M., Hinde D.J., Rowley N., Stefanini A.M., Measuring Barriers To Fusion, Annu. Rev. Nucl. Part. Sci., 48 1998) 401.
  • [14] Wong C.Y., Interaction Barriers in Charged-Particle Nuclear Reactions, Phys. Rev. Lett., 31 (1973) 766.
  • [15] Hagino, K., Rowley N., Large-Angle Scattering and Quasielastic Barrier Distributions, Phys. Rev. C69, (2004) 054610
  • [16] Hagino K., Rowley N., Kruppa A.T., A Program For Coupled-Channel Calculations with all order Couplings for Heavy- Ion Fusşon Reactions, Comput. Phys. Commun., 123 (1999) 143.
  • [17] Dasso C. H., CCFUS,Comput. Phys. Commun., 46 (1987) 187-191.
  • [18] Fernandez Niello J., Dasso C.H., Landowne S., CCDEF, Comput. Phys. Commun., 54 (1989) 409.
  • [19] http://nrv.jinr.ru/nrv/
  • [20] Stokstad R. G., Gross E. E., Analysis of Sub-Barrier Fusion of 16O+148,150,152,154Sm, Phys. Rev. C23, 281 (1981).
  • [21] Thomas T.D., Cross-Section for Compound Nucleus Formation in Heavy-Ion-Induced Reactions, Phys. Rev. 116, 703 (1959).
  • [22] Huizenga J., Igo G., Theoretical Reaction Cross Sections for Alpha Particles with an Optical Model, Nucl. Phys., 29 (1961) 462.
  • [23] Rasmussen J., Sugawara-Tanabe K., Theoretical Studies of Nuclear Collision Process es of Deformed Nuclei, Nucl. Phys. A, 171 (1971) 496.
  • [24] Santhosh K.P., Bobby Jose V., Antony Joseph, Varier K.M., Heavy-Ion Fusion Cross Sections and Barrier Distributions for 12C,16O,28Si and 35Cl on 92Zr, Nuclear Physics A, 817 (2009) 35-44.

Coupled-Channel Analyses on 〖Ti〗^(46,48,50)+〖Sn〗^124 Heav-ion Fusion Reactions

Year 2018, , 463 - 468, 29.06.2018
https://doi.org/10.17776/csj.361383

Abstract

Coulomb
bariyeri yakınındaki ağır iyon füzyonu, deneysel ve teorik ilgi çekmektedir. Çarpışmalar
tipik olarak birçok açık reaksiyon kanalı varlığı ile karakterize edilir.
Coulomb bariyerinin etrafındaki enerjilerde, süreç,
bir veya iki çekirdeğin elastik saçılma, inelastik uyarımlar ve füzyon
operasyonlarıdır. Füzyon süreci, saçılma potansiyelini Coulomb ve yakınlık
potansiyelinin toplamı olarak alan tek boyutlu bariyer penetrasyon modelinin
etkisi olarak tanımlanır. Çiftlenmiş kanallar (CC) hesaplamaları ile ağır iyon
füzyon reaksiyonları gerçekleştirdik. CC formalizmi, ağır füzyon
reaksiyonlarında bariyer enerjisi altında gerçekleştirilir. Buçalışmada, füzyon
tesir kesitleri CC hesaplamaları ile (CCFULL [16], CCFUS [17] ve CCDEF [18]
kodları kullanılarak)
sistemleri için detaylı olarak incelenmiştir.
Hesaplanan sonuçlar, deneysel veri ve ‘nrv’ de hesaplanan mermi ve hedef için
ve uyarılmalarını içeren verilerle karşılaştırılmıştır. Hesaplanan
Sonuçlar ile deneysel ve ‘nrv’ [19] sonuçları arasında iyi bir uyum mecvuttur.

References

  • [1] Takigawa N., Hagino K., Heavy Elements and Related New Phenomena, 1025.
  • [2] M. Beckerman, Sub-Barrier Fusion of Two Nuclei, Rep. Prog. Phys.51(1988) 1047; Phys. Rep., 129 (1985) 145.
  • [3] Balantekin A.B., Takigawa N., Quantum Tunnelin in Nuclear Physics, Rev. Mod. Phys., 70 (1998) 77.
  • [4] Santhosh K.P., Bobby Jose V., Heavy-Ion Fusion Ractions of 16O on Spherical/ Deformed 144-154Sm Targets Using Coulomb and Proximity Potentials, Romanian Reports in Phys., 66 (2014) 4, 939-951.
  • [5] G. H. Rawitscher, Nucl. Phys., A85 (1963) 337.
  • [6] Stokstad R. G., Gross E. E., Analysis of the Sub-Barrier fusion of 16O+148,150,152,154Sm, Phys. Rev. C23, (1981) 281.
  • [7] Lipperheide R., Rossner H., Massmann H., Calculation of Reaction and Fusion Cross Sections Using Angle-Dependent Phase Shifts, Nucl. Phys. A394 (1983) 312.
  • [8] Santhosh K. P., Bobby Jose V., Heavy- Ion Fusion Cross Sections of Weakly Bound 9Be on 27Al, 64Zn and Tightly Bound 16O on 64Zn Target Using Coulomb and Proximity Potentials, Nuclear Physics A, 922 (2014) 191-199.
  • [9] Tanimura O., Physical Review, C 35 (1998)4.
  • [10] Birkelund J. R., Tubbs L. E., Huizenga J. R., De J. N., Sperber, Heavy-Ion Fusion: Comparison of Experimental Data with Classical Trajectory Models, Phys. Rep., 56 (1979) 107.
  • [11] Canto L.F., Hussein M.S., Scattering Theory of Molecules, Atoms and Nuclei. World Scientific Publishing Co. Pte. Ltd. (2013)
  • [12] Toubiana A.J., Canto L.F., Hussein M.S., Approximate Transmission Coefficients in Heavy Ion Fusion, Braz J Phys., 47 (2017) 321–332.
  • [13] Dasgupta, M., Hinde D.J., Rowley N., Stefanini A.M., Measuring Barriers To Fusion, Annu. Rev. Nucl. Part. Sci., 48 1998) 401.
  • [14] Wong C.Y., Interaction Barriers in Charged-Particle Nuclear Reactions, Phys. Rev. Lett., 31 (1973) 766.
  • [15] Hagino, K., Rowley N., Large-Angle Scattering and Quasielastic Barrier Distributions, Phys. Rev. C69, (2004) 054610
  • [16] Hagino K., Rowley N., Kruppa A.T., A Program For Coupled-Channel Calculations with all order Couplings for Heavy- Ion Fusşon Reactions, Comput. Phys. Commun., 123 (1999) 143.
  • [17] Dasso C. H., CCFUS,Comput. Phys. Commun., 46 (1987) 187-191.
  • [18] Fernandez Niello J., Dasso C.H., Landowne S., CCDEF, Comput. Phys. Commun., 54 (1989) 409.
  • [19] http://nrv.jinr.ru/nrv/
  • [20] Stokstad R. G., Gross E. E., Analysis of Sub-Barrier Fusion of 16O+148,150,152,154Sm, Phys. Rev. C23, 281 (1981).
  • [21] Thomas T.D., Cross-Section for Compound Nucleus Formation in Heavy-Ion-Induced Reactions, Phys. Rev. 116, 703 (1959).
  • [22] Huizenga J., Igo G., Theoretical Reaction Cross Sections for Alpha Particles with an Optical Model, Nucl. Phys., 29 (1961) 462.
  • [23] Rasmussen J., Sugawara-Tanabe K., Theoretical Studies of Nuclear Collision Process es of Deformed Nuclei, Nucl. Phys. A, 171 (1971) 496.
  • [24] Santhosh K.P., Bobby Jose V., Antony Joseph, Varier K.M., Heavy-Ion Fusion Cross Sections and Barrier Distributions for 12C,16O,28Si and 35Cl on 92Zr, Nuclear Physics A, 817 (2009) 35-44.
There are 24 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Natural Sciences
Authors

Burcu Erol

Ahmet Hakan Yılmaz

Publication Date June 29, 2018
Submission Date December 4, 2017
Acceptance Date June 1, 2018
Published in Issue Year 2018

Cite

APA Erol, B., & Yılmaz, A. H. (2018). Coupled-Channel Analyses on 〖Ti〗^(46,48,50)+〖Sn〗^124 Heav-ion Fusion Reactions. Cumhuriyet Science Journal, 39(2), 463-468. https://doi.org/10.17776/csj.361383