Research Article
BibTex RIS Cite

Seryum, Demir ve Bakır Emdirmenin, Ti-Sütunlu Bentonitlerin Yapısal Özellikleri ve Aktiviteleri Üzerine Etkileri

Year 2018, , 477 - 495, 29.06.2018
https://doi.org/10.17776/csj.343221

Abstract

Orta
Anadolu yöresi (Hançılı) bentoniti kullanılarak, Ti-sütunlu bentonit (Ti-SB)
sentezlenmiştir. Ti-SB’e demir ya da bakır, çözeltiden emdirilmiş ve devamında
seryum, ıslak emdirmeyle demirli ve bakırlı Ti-SB’e ilave edilmiştir. B
akırlı
titanyumlu sütunlu bentonitler, Cu/(Cu+Ti) 0,1 ve 0,2 oranlarında hidrotermal
olarak sentezlenmiştir. Bütün numunelerde titanyum dioksit, anataz fazda
görülmüştür.
500 °C de kalsine
edilmiş Ti-SB için 4.41 nm bazal boşluk değeri, 348 m2 g-1
spesifik BET yüzey alanı, 0.093 cm3g-1 mikrogözenek hacim
değeri elde edilmiştir.  Demir ve bakırın
sonradan ilave edilmesi, elde edilen örneklerin mikrogözenek özelliklerinde
azalmaya sebep olurken, hidrotermal yöntemle sentezlenen bakır titanyumlu örnekler,
Ti-SB ile benzer davranış sergilemişlerdir. 
Enerji dağılımlı X-ışını spektroskopisi (EDS) analizi, bütün örneklerin
TiO2 içeriğinin ağırlıkça yaklaşık % 40 civarında olduğunu ve
Ti-SB’e metal emdirmenin başarılı bir şekilde gerçekleştiğini göstermiştir.
Ti-SB örneklerinde hem Lewis hem de
Brønsted asitliği gözlenmiştir. Bakır emdirme, Lewis asitlikte artışa
neden olmuştur. Hidrotermal olarak sentezlenmiş bakır içeren örneklerde, seryum
demir ve seryum bakırlı örneklerde Bronsted asitliğinin arttığı gözlenmiştir.
Seryum ve demir içeren örnekle gerçekleştirilen reaksiyon çalışmalarında
yaklaşık % 90 fenol dönüşümü, 30
°C de 1 saat içinde elde edilmiş ve fotokatalitik oksidasyonun
tamamlanması 2 saatde gerçekleşmiştir. Sıcaklığın artması, fenol dönüşümünü
artırmış ve demir içeren örnekle,
50 °C de 1 saat içinde yaklaşık % 100 dönüşüm elde
edilmiştir. Hidrokinon, benzokinon, katekol ve formic, malik, fumarik asitler
reaksiyon ara ürünleri olarak gözlenmiştir. Düşük değerlerde metal salınımı ve
demirin bakıra göre 6 kat daha fazla kararlılık gösterdiği gözlenmiştir. 

References

  • [1] Gil A., Korili S.A., Trujillano R. and Vicente M.A., A review on characterization of pillared clays by specific techniques, Appl. Clay Sci., 53 (2011) 97-105.
  • [2] Bergaya F., Aouad A., Mandalia T., Pillared clays and clay minerals, In: Bergaya F., Theng B.K.G., Lagaly G. (Eds.). Development in Clay Science: Handbook of Clay Science. vol. 1, 2nd ed., Amsterdam: Elsevier, 2011; pp 393–421.
  • [3] Vicente M.A., Gil A., Bergaya F., Pillared clays and clay minerals, In: Bergaya F., Lagaly G. (Eds.), Development in Clay Science: Handbook of Clay Science, Part A: Fundamentals, vol. 5, 2nd ed., Amsterdam: Elsevier, 2013; pp 523–557.
  • [4] Fechete I., Wang Y. and Vedrine J.C., The past, present and future of heterogeneous catalysis, Catal. Today, 189 (2012) 2- 27.
  • [5] Centi G. and Perathoner S., Catalysis by layered materials: a review, Microporous Mesoporous. Mater., 107 (2008) 3-15.
  • [6] Turgut Basoglu F. and Balci S., Catalytic properties and activity of copper and silver containing Al-pillared layered bentonite for CO oxidation, J. Molecular Struct., 1106 (2016) 382-389.
  • [7] Turgut Basoglu F., Effect of the titanium source on the structural properties and acidity of Ti-pillared bentonite, Chem. Pap., 70-7 (2016) 933-945.
  • [8] Tomul F., Turgut Basoglu F. and Canbay H., Determination of adsorptive and catalytic properties of copper, silver and iron containing titanium-pillared bentonite for the removal bisphenol A from aqueous solution, Appl. Surf. Sci., 360 Part B (2016) 579-593.
  • [9] Bineesh K.V., Kim D., Kim M. and Park D., Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia, Appl. Clay Sci., 53 (2011) 204-211.
  • [10] Carriazo J.G., Moreno-Forero M., Molina R.A. and Moreno S., Incorporation of titanium and titanium iron species inside a smectite type mineral for photocatalysis, Appl. Clay Sci., 50 (2010) 401-408.
  • [11] Chen K., Li J., Li J., Zhang Y. and Wang W., Synthesis and Characterization of TiO2 montmorillonites doped with vanadium and/or carbon and their application for the photodegredation of sulphorbodamine B under UV-vis irradiation, Colloids Surf. A, 360 (2010) 47-56.
  • [12] Chmielarz L., Piwowarska Z., Kustrowski P., Wegrzyn A., Gil B., Kowalczyk A., Dudek B., Dziembaj R. and Michalik M., Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process, Appl. Clay Sci., 53 (2011) 164-173.
  • [13] Lu G., Li X., Qu Z., Zhao Q., Zhao I. and Chen G., Copper ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene, Chem. Eng. J., 168 (2011) 1128-1133.
  • [14] Zhang J., Zhang S., Cai W. and Zhong Q., The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx, Appl. Surf. Sci., 268 (2013) 535-540.
  • [15] Busca G., Berardinelli S., Resini C. and Arrighi, L., Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard. Mater., 160 (2008) 265-288.
  • [16] Ye W., Zhao B., Gao H., Huang J. and Zhang X., Preparation of highly efficient and stable Fe, Zn, Al-pillared montmorillonite as heteregeneous catalyst for catalytic wet peroxide oxidation of Orange II, J. Porous Mater., 23 (2016) 301-310.
  • [17] Galeano L-A., Vicente M.A. and Gil A., Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M= Fe, Cu, Mn), Catal. Rev. Sci. Eng., 56 (2014) 239-287.
  • [18] Mnasri-Ghnimi S. and Frini-Srasra N., Catalytic wet peroxide oxidation of phenol over Ce-Zr-modified clays: Effect of the pillaring method, Korean J. Chem. Eng., 32-1 (2015) 68-73.
  • [19] Yan Y., Jiang S., Zhang H. and Zhang X., Preparation of novel Fe-ZSM-5 zeolite membrane catalysts for catalytic wet peroxide oxidation of phenol in a membrane reactor, Chem. Eng. J., 259 (2015) 243-251.
  • [20] Luca C., Massa P., Fenoglio R. and Cabello F.M., Improved Fe2O3/Al2O3 as heteregeneous Fenton catalysts for the oxidation of phenol solutions in a continuous reactor, J. Chem. Technol. Biotechnol., 89 (2014) 1121-1128.
  • [21] Martinez F., Pariente M.I., Botas J.A., Melero J.A. and Rubalcaba A., Influence of preoxidizing treatments on the preparation of iron-containing activated carbons for catalytic wet peroxide oxidation of phenol, J. Chem. Technol. Biotechnol., 87 (2012) 880-886.
  • [22] Satishkumar G., Landau M.V., Buzaglo T., Frimet L., Ferentz M., Vidruk R., Wagner F., Gal Y. and Herskowitz M., Fe/SiO2 heteregeneous Fenton catalyst for continuous catalytic wet peroxide oxidation prepared in situ by grafting of iron released from LaFeO3, Appl. Catal. B Environ., 138-139 (2013) 276-284.
  • [23] Zhong X., Barbier J., Duprez D., Zhang H. and Royer S., Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: effect on the activity for the CWPO of phenol reaction, Appl. Catal. B Environ., 121-122 (2012) 123-134.
  • [24] Dougna A.A., Gombert B., Kodom T., Djaneye-Boundjou G., Boukari S.O.B., Vel Leitner N.K. and Bawa L.M., Photocatalytic removal of phenol using titanium dioxide deposited on different substrates: Effect of inorganic oxidants, J. Photochem. Photobio. A Chem., 305 (2015) 67-77.
  • [25] Khraisheh M., Wu L., Al-Muhtaseb A.H., Albadarin A.B. and Walker G.M., Phenol degradation by powdered metal ion modified titanium dioxide photocatalysts, Chem. Eng. J., 213 (2012) 125-134.
  • [26] Lopes R.J.G., Perdigoto M.L.N. and Quinta-Ferreira R.M., Tailored investigation and characterization of heteregeneous {Mn, Cu}/TiO2 catalysts embedded within a ceria-based framework for the wet peroxide oxidation of hazardous pollutants, Appl. Catal. B Environ., 117-118 (2012) 292-301.
  • [27] Menesi J., Körösi L., Bazso E., Zöllmer V., Richardt A. and Dekany I., Photocatalytic oxidation of organic pollutants on titania-clay composites, Chemosphere, 70 (2008) 538-542.
  • [28] Turki A., Guillard C., Dappozze F., Ksibi Z., Berhault G. and Kochkar H., Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms, Appl. Catal. B Environ., 163 (2015) 404-414.
  • [29] Li Z., Sheng J., Zhang Y., Li X. and Xu Y., Role of CeO2 as oxygen promoter in the accelerated photocatalytic degradation of phenol over rutile TiO2, Appl. Catal. B Environ., 166-167 (2015) 313-319.
  • [30] Mnasri-Ghnimi S. and Frini-Srasra N., Effect of Al and Ce on Zr-pillared bentonite and their performance in catalytic oxidation of phenol, Russian J. Phys. Chem. A, 90-9 (2016) 1766-1773.
  • [31] Timofeeva M.N., Khankhasaeva S.Ts., Talsi E P., Panchenko V.N., Golovin A.V., Dashinamzhilova E.Ts. and Tsybulya S.V., The effect of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as catalysts in phenol peroxide oxidation, Appl. Catal. B Environ., 90 (2009) 618-627.
  • [32] Tomul F., The effect of ultrasonic treatment on iron-chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol, Appl. Clay Sci., 120 (2016) 121-134.
  • [33] Tomul F., Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Cr-pillared bentonites, J. Nanomater., (2012) DOI:10.1155/2012/237853.
  • [34] Tomul F., Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite, Appl. Surf. Sci., 258 (2011) 1836-1848.
  • [35] Olaya A., Blanco G., Bernal S., Moreno S. and Molina R., Synthesis of pillared clays with Al-Fe and Al-Fe-Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction, Appl. Catal. B Environ., 93 (2009) 56-65.
  • [36] Platon N., Siminiceanu I., Nistor I.D., Silion M., Jinescu J., Harrouna M. and Azzouz A., Catalytic wet oxidation of phenol with hydrogen peroxide over modified clay minerals, Rev. Chim., 64-12 (2013) 1459-1464.
  • [37] Carriazo J. G., Molina R. and Moreno S., A study on Al and Al-Ce-Fe pillaring species and their catalytic potential as they are supported on a bentonite, Appl. Catal. A Gen., 334 (2008) 168-172.
  • [38] Sanabria N.R., Peralta Y.M., Montanez M.K., Rodriguez-Valencia N., Molina R. and Moreno S., Catalytic oxidation with Al-Ce-Fe-PILC as a post-treatment system for coffee wet processing wastewater, Water Sci. Tech., 66-8 (2012) 1663-1668.
  • [39] Yang S., Liang G., Gu A. and Mao H., Synthesis of mesoporous iron-incorporated silica-pillared clay and catalytic performance for phenol hydroxylation, Appl. Surf. Sci., 285 (2013) 721-726.
  • [40] Ooka C., Yoshida H., Suzuki K. and Hattori T., Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water, Microporous Mesoporous Mater., 67 (2004) 143-150.
  • [41] Herney-Ramirez J., Vicente M.A. and Madeira L.M., Heteregeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment:A review, Appl. Catal. B Environ., 98 (2010) 10-26.
  • [42] Garrido-Ramirez E.G., Theng B.K.G. and Mora M.L., Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-A review, Appl. Clay Sci., 47 (2010) 182-192.
  • [43] Khankhasaeva S. Ts., Dashinamzhilova E. Ts. and Dambueva D. V., Oxidative degradation of sulfanilamide catalyzed by Fe/Cu/Al-pillared clays, Appl. Clay Sci., 146 (2017) 92-99.
  • [44] Campo E.M., Romero R., Roa G., Peralta-Reyes E., Espino-Valenvia J. and Natividad R., Photo-Fenton oxidation of phenolic compounds catalyzed by iron-PILC, Fuel, 138 (2014) 149-155.
  • [45] Turgut Basoglu F. and Balci S., Micro-mesopore analysis of Cu2+ and Ag+ containing Al-pillared bentonite, Appl. Clay Sci., 50 (2010) 73-80.
  • [46] Arfoui J., Boudali L.K. and Ghorbel A., Vanadia-doped titanium-pillared clay: Preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol., Catal. Commun., 7 (2006) 86-90.
  • [47] Yang R.T., Chen J.P., Kikkinides E.S. and Cheng L.S., Pillared clays as superior catalysts for selective catalytic reduction of NO with NH3, Ind. Eng. Chem. Res., 31 (1992) 1440-1445.
  • [48] Chmielarz L., Piowowarska Z., Kustrowski P., Wegrzyn A., Gil B., Kowalczyk A., Dziembaj B. and Michalik M., Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process, Appl. Clay Sci., 53 (2011) 164-173.
  • [49] Lowell S., Shields J.E., Thomas M.A., Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, 2004; pp 213-228.
  • [50] Rauquerol F., Rauquerol J., Sing K., Adsorption by powders and porous solids, London: Academic Press, 1999; pp 165-234.
  • [51] Olmez-Hanci T. and Arslan-Alaton I., Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol, Chem. Eng. J., 224 (2013) 10-16.
  • [52] Koyuncu F., Organic acid composition of native black mulberry fruit, Chem. Nat. Comp., 40 (2004) 367-369.
  • [53] Anirudhan T.S., Bringle C.D. and Rijith S., Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acdi-immobilized zirconium-pillared clay, J. Environ. Radioact., 101 (2010) 267-276.
  • [54] Diebold U., The surface science of titanium dioxide, Surf. Sci. Rep., 48 (2003) 53-229.
  • [55] Farfan-Torres E.M., Sham E. and Grange P., Pillared clays: Preparation and characterization of zirconium pillared montmorillonite, Catal. Today, 15 (1992) 515.
  • [56] Yu L., Wang C., Ren X. and Sun H., Catalytic oxidative degredation of bisphenol A using an ultrasonic assisted tourmaline-based system: influence factors and mechanism study, Chem. Eng. J., 252 (2014) 346-354.
  • [57] Khanikar N. and Bhattacharyya K.G., Cu(II)-kaolinite and Cu(II)-montmorillonite as catalysts for wet oxidative degredation of 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol, Chem. Eng. J., 233 (2013) 88-97.
  • [58] Yip A.C., Lam F.L. and Hu X., Chemical vapor deposited copper on acid activated bentonite clay as an applicable heteregeneous catalyst for the photo-Fenton-like oxidation of textile organic pollutants, Ind. Eng. Chem. Res., 44 (2005) 7983-7990.
  • [59] Rokhina E.V. and Virkutyte J., Environmental application of catalytic processes: heterogeneous liquid phase oxidation of phenol with hydrogen peroxide, Critical Rev. Environ. Sci. Tech., 41 (2011) 125–167.
  • [60] Zhong X., Barbier Jr. J., Duprez D., Zhang H. and Royer S., Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction, Appl. Catal. B: Environ., 121-122 (2012) 123– 134.

Effects of Cerium, Iron and Copper Incorporation on the Structural Properties and Activities of Ti-Pillared Bentonites

Year 2018, , 477 - 495, 29.06.2018
https://doi.org/10.17776/csj.343221

Abstract

Ti-pillared
bentonite (
Ti-PB) using bentonite from the Middle Anatolia region
(Hançılı) was synthesized. Iron or copper was
impregnated to Ti-PB from the solution and subsequent cerium
incorporation was done by wet impregnation.
The hydrothermal syntheses were carried out with a Cu/(Cu+Ti)
ratios
of 0.1
and 0.2. T
he anatase phase of titanium dioxide was found for all of
the samples. The Ti-PB calcined at 500
°C gave a basal spacing value of 4.41 nm, a specific BET surface area of 348 m2
g-1, and a micropore volume of 0.093 cm3g-1.
While the post
incorporation of copper and iron caused decrease in the micropore properties,
the hydrothermally synthesized copper titanium samples reflected the similar
behavior with Ti-PB. E
nergy dispersive X-ray spectroscopy (EDS) analyses
indicated that
TiO2 content of all PBs was near 40 wt % and metal
incorporation to Ti-PB was succesfully performed by the impregnation method.
Ti-PB exhibited both
the Lewis and Brønsted acidities. The copper impregnation
resulted in an increase in the Lewis
acidity.
The hydrotermally synthesised copper containing
sample and cerium-iron and cerium-copper impregnated samples yielded an
increase in the Br
ønsted acidity. Approximately 90 % phenol conversion at 30 °C in an hour was achived with the cerium and iron containing sample and the completion of photocatalytic
oxidation was reached at 2 hours. An increase of temperature rised the
conversion of phenol,
and the iron
containing sample resulted in approximately 100 % conversion at an hour at 50
°C.
Hydroquinone, benzoquinone and catechol and
formic, malic, fumaric acids were observed as the reaction intermediates. The
leaching of metals was observed at low values and the stability of iron was
found six times higher than the copper.

References

  • [1] Gil A., Korili S.A., Trujillano R. and Vicente M.A., A review on characterization of pillared clays by specific techniques, Appl. Clay Sci., 53 (2011) 97-105.
  • [2] Bergaya F., Aouad A., Mandalia T., Pillared clays and clay minerals, In: Bergaya F., Theng B.K.G., Lagaly G. (Eds.). Development in Clay Science: Handbook of Clay Science. vol. 1, 2nd ed., Amsterdam: Elsevier, 2011; pp 393–421.
  • [3] Vicente M.A., Gil A., Bergaya F., Pillared clays and clay minerals, In: Bergaya F., Lagaly G. (Eds.), Development in Clay Science: Handbook of Clay Science, Part A: Fundamentals, vol. 5, 2nd ed., Amsterdam: Elsevier, 2013; pp 523–557.
  • [4] Fechete I., Wang Y. and Vedrine J.C., The past, present and future of heterogeneous catalysis, Catal. Today, 189 (2012) 2- 27.
  • [5] Centi G. and Perathoner S., Catalysis by layered materials: a review, Microporous Mesoporous. Mater., 107 (2008) 3-15.
  • [6] Turgut Basoglu F. and Balci S., Catalytic properties and activity of copper and silver containing Al-pillared layered bentonite for CO oxidation, J. Molecular Struct., 1106 (2016) 382-389.
  • [7] Turgut Basoglu F., Effect of the titanium source on the structural properties and acidity of Ti-pillared bentonite, Chem. Pap., 70-7 (2016) 933-945.
  • [8] Tomul F., Turgut Basoglu F. and Canbay H., Determination of adsorptive and catalytic properties of copper, silver and iron containing titanium-pillared bentonite for the removal bisphenol A from aqueous solution, Appl. Surf. Sci., 360 Part B (2016) 579-593.
  • [9] Bineesh K.V., Kim D., Kim M. and Park D., Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia, Appl. Clay Sci., 53 (2011) 204-211.
  • [10] Carriazo J.G., Moreno-Forero M., Molina R.A. and Moreno S., Incorporation of titanium and titanium iron species inside a smectite type mineral for photocatalysis, Appl. Clay Sci., 50 (2010) 401-408.
  • [11] Chen K., Li J., Li J., Zhang Y. and Wang W., Synthesis and Characterization of TiO2 montmorillonites doped with vanadium and/or carbon and their application for the photodegredation of sulphorbodamine B under UV-vis irradiation, Colloids Surf. A, 360 (2010) 47-56.
  • [12] Chmielarz L., Piwowarska Z., Kustrowski P., Wegrzyn A., Gil B., Kowalczyk A., Dudek B., Dziembaj R. and Michalik M., Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process, Appl. Clay Sci., 53 (2011) 164-173.
  • [13] Lu G., Li X., Qu Z., Zhao Q., Zhao I. and Chen G., Copper ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene, Chem. Eng. J., 168 (2011) 1128-1133.
  • [14] Zhang J., Zhang S., Cai W. and Zhong Q., The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx, Appl. Surf. Sci., 268 (2013) 535-540.
  • [15] Busca G., Berardinelli S., Resini C. and Arrighi, L., Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard. Mater., 160 (2008) 265-288.
  • [16] Ye W., Zhao B., Gao H., Huang J. and Zhang X., Preparation of highly efficient and stable Fe, Zn, Al-pillared montmorillonite as heteregeneous catalyst for catalytic wet peroxide oxidation of Orange II, J. Porous Mater., 23 (2016) 301-310.
  • [17] Galeano L-A., Vicente M.A. and Gil A., Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M= Fe, Cu, Mn), Catal. Rev. Sci. Eng., 56 (2014) 239-287.
  • [18] Mnasri-Ghnimi S. and Frini-Srasra N., Catalytic wet peroxide oxidation of phenol over Ce-Zr-modified clays: Effect of the pillaring method, Korean J. Chem. Eng., 32-1 (2015) 68-73.
  • [19] Yan Y., Jiang S., Zhang H. and Zhang X., Preparation of novel Fe-ZSM-5 zeolite membrane catalysts for catalytic wet peroxide oxidation of phenol in a membrane reactor, Chem. Eng. J., 259 (2015) 243-251.
  • [20] Luca C., Massa P., Fenoglio R. and Cabello F.M., Improved Fe2O3/Al2O3 as heteregeneous Fenton catalysts for the oxidation of phenol solutions in a continuous reactor, J. Chem. Technol. Biotechnol., 89 (2014) 1121-1128.
  • [21] Martinez F., Pariente M.I., Botas J.A., Melero J.A. and Rubalcaba A., Influence of preoxidizing treatments on the preparation of iron-containing activated carbons for catalytic wet peroxide oxidation of phenol, J. Chem. Technol. Biotechnol., 87 (2012) 880-886.
  • [22] Satishkumar G., Landau M.V., Buzaglo T., Frimet L., Ferentz M., Vidruk R., Wagner F., Gal Y. and Herskowitz M., Fe/SiO2 heteregeneous Fenton catalyst for continuous catalytic wet peroxide oxidation prepared in situ by grafting of iron released from LaFeO3, Appl. Catal. B Environ., 138-139 (2013) 276-284.
  • [23] Zhong X., Barbier J., Duprez D., Zhang H. and Royer S., Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: effect on the activity for the CWPO of phenol reaction, Appl. Catal. B Environ., 121-122 (2012) 123-134.
  • [24] Dougna A.A., Gombert B., Kodom T., Djaneye-Boundjou G., Boukari S.O.B., Vel Leitner N.K. and Bawa L.M., Photocatalytic removal of phenol using titanium dioxide deposited on different substrates: Effect of inorganic oxidants, J. Photochem. Photobio. A Chem., 305 (2015) 67-77.
  • [25] Khraisheh M., Wu L., Al-Muhtaseb A.H., Albadarin A.B. and Walker G.M., Phenol degradation by powdered metal ion modified titanium dioxide photocatalysts, Chem. Eng. J., 213 (2012) 125-134.
  • [26] Lopes R.J.G., Perdigoto M.L.N. and Quinta-Ferreira R.M., Tailored investigation and characterization of heteregeneous {Mn, Cu}/TiO2 catalysts embedded within a ceria-based framework for the wet peroxide oxidation of hazardous pollutants, Appl. Catal. B Environ., 117-118 (2012) 292-301.
  • [27] Menesi J., Körösi L., Bazso E., Zöllmer V., Richardt A. and Dekany I., Photocatalytic oxidation of organic pollutants on titania-clay composites, Chemosphere, 70 (2008) 538-542.
  • [28] Turki A., Guillard C., Dappozze F., Ksibi Z., Berhault G. and Kochkar H., Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms, Appl. Catal. B Environ., 163 (2015) 404-414.
  • [29] Li Z., Sheng J., Zhang Y., Li X. and Xu Y., Role of CeO2 as oxygen promoter in the accelerated photocatalytic degradation of phenol over rutile TiO2, Appl. Catal. B Environ., 166-167 (2015) 313-319.
  • [30] Mnasri-Ghnimi S. and Frini-Srasra N., Effect of Al and Ce on Zr-pillared bentonite and their performance in catalytic oxidation of phenol, Russian J. Phys. Chem. A, 90-9 (2016) 1766-1773.
  • [31] Timofeeva M.N., Khankhasaeva S.Ts., Talsi E P., Panchenko V.N., Golovin A.V., Dashinamzhilova E.Ts. and Tsybulya S.V., The effect of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as catalysts in phenol peroxide oxidation, Appl. Catal. B Environ., 90 (2009) 618-627.
  • [32] Tomul F., The effect of ultrasonic treatment on iron-chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol, Appl. Clay Sci., 120 (2016) 121-134.
  • [33] Tomul F., Influence of synthesis conditions on the physicochemical properties and catalytic activity of Fe/Cr-pillared bentonites, J. Nanomater., (2012) DOI:10.1155/2012/237853.
  • [34] Tomul F., Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite, Appl. Surf. Sci., 258 (2011) 1836-1848.
  • [35] Olaya A., Blanco G., Bernal S., Moreno S. and Molina R., Synthesis of pillared clays with Al-Fe and Al-Fe-Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction, Appl. Catal. B Environ., 93 (2009) 56-65.
  • [36] Platon N., Siminiceanu I., Nistor I.D., Silion M., Jinescu J., Harrouna M. and Azzouz A., Catalytic wet oxidation of phenol with hydrogen peroxide over modified clay minerals, Rev. Chim., 64-12 (2013) 1459-1464.
  • [37] Carriazo J. G., Molina R. and Moreno S., A study on Al and Al-Ce-Fe pillaring species and their catalytic potential as they are supported on a bentonite, Appl. Catal. A Gen., 334 (2008) 168-172.
  • [38] Sanabria N.R., Peralta Y.M., Montanez M.K., Rodriguez-Valencia N., Molina R. and Moreno S., Catalytic oxidation with Al-Ce-Fe-PILC as a post-treatment system for coffee wet processing wastewater, Water Sci. Tech., 66-8 (2012) 1663-1668.
  • [39] Yang S., Liang G., Gu A. and Mao H., Synthesis of mesoporous iron-incorporated silica-pillared clay and catalytic performance for phenol hydroxylation, Appl. Surf. Sci., 285 (2013) 721-726.
  • [40] Ooka C., Yoshida H., Suzuki K. and Hattori T., Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water, Microporous Mesoporous Mater., 67 (2004) 143-150.
  • [41] Herney-Ramirez J., Vicente M.A. and Madeira L.M., Heteregeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment:A review, Appl. Catal. B Environ., 98 (2010) 10-26.
  • [42] Garrido-Ramirez E.G., Theng B.K.G. and Mora M.L., Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-A review, Appl. Clay Sci., 47 (2010) 182-192.
  • [43] Khankhasaeva S. Ts., Dashinamzhilova E. Ts. and Dambueva D. V., Oxidative degradation of sulfanilamide catalyzed by Fe/Cu/Al-pillared clays, Appl. Clay Sci., 146 (2017) 92-99.
  • [44] Campo E.M., Romero R., Roa G., Peralta-Reyes E., Espino-Valenvia J. and Natividad R., Photo-Fenton oxidation of phenolic compounds catalyzed by iron-PILC, Fuel, 138 (2014) 149-155.
  • [45] Turgut Basoglu F. and Balci S., Micro-mesopore analysis of Cu2+ and Ag+ containing Al-pillared bentonite, Appl. Clay Sci., 50 (2010) 73-80.
  • [46] Arfoui J., Boudali L.K. and Ghorbel A., Vanadia-doped titanium-pillared clay: Preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol., Catal. Commun., 7 (2006) 86-90.
  • [47] Yang R.T., Chen J.P., Kikkinides E.S. and Cheng L.S., Pillared clays as superior catalysts for selective catalytic reduction of NO with NH3, Ind. Eng. Chem. Res., 31 (1992) 1440-1445.
  • [48] Chmielarz L., Piowowarska Z., Kustrowski P., Wegrzyn A., Gil B., Kowalczyk A., Dziembaj B. and Michalik M., Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process, Appl. Clay Sci., 53 (2011) 164-173.
  • [49] Lowell S., Shields J.E., Thomas M.A., Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, 2004; pp 213-228.
  • [50] Rauquerol F., Rauquerol J., Sing K., Adsorption by powders and porous solids, London: Academic Press, 1999; pp 165-234.
  • [51] Olmez-Hanci T. and Arslan-Alaton I., Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol, Chem. Eng. J., 224 (2013) 10-16.
  • [52] Koyuncu F., Organic acid composition of native black mulberry fruit, Chem. Nat. Comp., 40 (2004) 367-369.
  • [53] Anirudhan T.S., Bringle C.D. and Rijith S., Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acdi-immobilized zirconium-pillared clay, J. Environ. Radioact., 101 (2010) 267-276.
  • [54] Diebold U., The surface science of titanium dioxide, Surf. Sci. Rep., 48 (2003) 53-229.
  • [55] Farfan-Torres E.M., Sham E. and Grange P., Pillared clays: Preparation and characterization of zirconium pillared montmorillonite, Catal. Today, 15 (1992) 515.
  • [56] Yu L., Wang C., Ren X. and Sun H., Catalytic oxidative degredation of bisphenol A using an ultrasonic assisted tourmaline-based system: influence factors and mechanism study, Chem. Eng. J., 252 (2014) 346-354.
  • [57] Khanikar N. and Bhattacharyya K.G., Cu(II)-kaolinite and Cu(II)-montmorillonite as catalysts for wet oxidative degredation of 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol, Chem. Eng. J., 233 (2013) 88-97.
  • [58] Yip A.C., Lam F.L. and Hu X., Chemical vapor deposited copper on acid activated bentonite clay as an applicable heteregeneous catalyst for the photo-Fenton-like oxidation of textile organic pollutants, Ind. Eng. Chem. Res., 44 (2005) 7983-7990.
  • [59] Rokhina E.V. and Virkutyte J., Environmental application of catalytic processes: heterogeneous liquid phase oxidation of phenol with hydrogen peroxide, Critical Rev. Environ. Sci. Tech., 41 (2011) 125–167.
  • [60] Zhong X., Barbier Jr. J., Duprez D., Zhang H. and Royer S., Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction, Appl. Catal. B: Environ., 121-122 (2012) 123– 134.
There are 60 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Funda Turgut Başoğlu

Publication Date June 29, 2018
Submission Date October 13, 2017
Acceptance Date April 27, 2018
Published in Issue Year 2018

Cite

APA Turgut Başoğlu, F. (2018). Effects of Cerium, Iron and Copper Incorporation on the Structural Properties and Activities of Ti-Pillared Bentonites. Cumhuriyet Science Journal, 39(2), 477-495. https://doi.org/10.17776/csj.343221