Research Article
BibTex RIS Cite

Determination of Serum Cathepsin G Level in Patients with Multiple Myeloma

Year 2024, , 263 - 267, 30.06.2024
https://doi.org/10.17776/csj.1453805

Abstract

Multiple myeloma is a hematological malignancy identified by bone marrow infiltration of clonal plasma cells. It is still not a curable disease under current conditions. Cathepsin G is a serine protease playing a role in inflammation that is present in the azurophilic granules of neutrophils. It is known that there is a relationship between Cathepsin G and chronic inflammatory diseases and tumors. The goal of the study is to define its role in multiple myeloma. In the study, 33 patients newly diagnosed with MM who were never received treatment and 33 control subjects were included. Basic laboratory parameters and Cathepsin G levels were examined both in the myeloma patient group and control group. While the serum CathG level in the control group is 22.84 ng/mL, the serum CathG level of the MM patient group is 10.77 ng/mL. Serum CathG level in the control group is statistically significantly higher than the MM patient group. The aim of the present study is to contribute to the literature in hematological malignancies, to figure out the role of Cathepsin G in multiple myeloma, and to open a door to new treatment options for multiple myeloma, which is an incurable disease, yet.

References

  • [1] Rajkumar SV., Multiple myeloma: Every year a new standard?, Hematological oncology, 37 (2019) 62-65.
  • [2] Zamolodchikova T.S., Tolpygo S.M., Svirshchevskaya E.V., Cathepsin G—not only inflammation: the immune protease can regulate normal physiological processes, Frontiers in immunology, 11 (2020) 411.
  • [3] Wang J., Sjöberg S., Tang T.T., Oörni K., Wu W., Liu C., Secco B., Tia V., Sukhova G.K., Fernandes C., Lesner A., Kovanen P.T., Libby P., Cheng X., Shi G.P., Cathepsin G activity lowers plasma LDL and reduces atherosclerosis, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(11) (2014) 2174-2183.
  • [4] Tazawa H., Okada F., Kobayashi T., Tada M., Mori Y., Une Y., Sendo F., Kobayashi M., Hosokawa M., Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression, American Journal of Pathology, 163(6) (2003) 2221– 2232.
  • [5] Smith H.A., Kang Y., The metastasis-promoting roles of tumor-associated immune cells, J Mol Med., 91(4) (2013) 411–429.
  • [6] Fridlender Z.G., Albelda S.M., Tumor associated neutrophils: friend or foe?, Carcinogenesis, 33(5) (2012) 949–955.
  • [7] Pham C.T., Neutrophil serine proteases: specific regulators of inflammation, Nat Rev Immunol., 6(7) (2006) 541–550.
  • [8] Martins-Cardoso K., Almeida V.H., Bagri K.M., Rossi M.I.D., Mermelstein C.S., König S., Monteiro R.Q., Neutrophil extracellular traps (Nets) promote pro-metastatic phenotype in human breast cancer cells through epithelial–mesenchymal transition, Cancers, 12(6) (2020) 1542.
  • [9] Li Y., Yang Y., Gan T., Zhou J., Hu F., Hao N., Yuan B., Chen Y., Zhang M., Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps, International journal of oncology, 55(1) (2019) 69-80.
  • [10] Shang A., Gu C., Zhou C., Yang Y., Chen C., Zeng B., Wu J., Lu W., Wang W., Sun Z., Li D., Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression, Cell Communication and Signaling, 18(1) (2020) 1-14.
  • [11] Yu M., Li T., Li B., Liu Y., Wang L., Zhang J., Jin J., Guan Y., Zuo N., Liu W., Jing H., Li Y., Du J., Dong Z., Jiang T., Xie R., Zhou J., Shi J., Phosphatidylserine-exposing blood cells, microparticles and neutrophil extracellular traps increase procoagulant activity in patients with pancreatic cancer, Thrombosis Research, 188 (2020) 5-16.
  • [12] Schedel F., Mayer-Hain S., Pappelbaum K.I., Metze D., Stock M., Goerge T., Loser K., Sunderkötter C., Luger T.A., Weishaupt C., Evidence and Impact of Neutrophil ExtracellularTraps in Malignant Melanoma, Pigment Cell Melanoma Res., 33(1) (2020) 63–73.
  • [13] Zha C., Meng X., Li L., Mi S., Qian D., Li Z., Wu P., Hu S., Zhao S., Cai J., Liu Y., Neutrophil Extracellular Traps Mediate the Crosstalk Between Glioma Progression and the Tumor Microenvironment via the HMGB1/RAGE/IL-8 Axis, Cancer Biol Med., 17(1) (2020) 154–168.
  • [14] Li M., Lin C., Deng H., Strnad J., Bernabei L., Vogl D.T., Burke J.J., Nefedova Y., A Novel Peptidylarginine Deiminase 4 (PAD4) Inhibitor BMS-P5 Blocks Formation of Neutrophil Extracellular Traps and Delays Progression of Multiple Myeloma, Mol Cancer Ther., 19(7) (2020) 1530-1538.
  • [15] Yui S., Osawa Y., Ichisugi T., Morimoto-Kamata R., Neutrophil Cathepsin G, but Not Elastase, Induces Aggregation of MCF-7 Mammary Carcinoma Cells by a Protease Activity-Dependent Cell-Oriented Mechanism, Mediators Inflamm., 2014(1) (2014) 971409.
  • [16] Yui S., Tomita K., Kudo T., Ando S., Yamazaki M., Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase, Cancer Science, 96(9) (2005) 560–570.
  • [17] Cools-Lartigue J., Spicer J., Najmeh S., Ferri L., Neutrophil extracellular traps in cancer progression, Cell Mol Life Sci., 71(21) (2014) 4179–4194.
  • [18] Wilson T.J., Nannuru K.C., Futakuchi M., Sadanandam A., Singh R.K., Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand, Cancer Res., 68(14) (2008) 5803–5811.
  • [19] Kudo T., Kigoshi H., Hagiwara T., Takino T., Yamazaki M., Yui S., Cathepsin G, a neutrophil protease, induces compact cell-cell adhesion in MCF-7 human breast cancer cells, Mediators Inflamm., 2009(1) (2009) 850940.
  • [20] Garwicz D., Lennartsson A., Jacobsen S.E., Gullberg U., Lindmark A., Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model, Haematologica, 90(1) (2005) 38–44.
  • [21] Zhang M., Sukhumalchandra P., Enyenihi A.A., St John L.S., Hunsucker S.A., Mittendorf E.A., Sergeeva A., Ruisaard K., Al-Atrache Z., Ropp P.A., Jakher H., Rodriguez-Cruz T., Lizee G., Clise-Dwyer K., Lu S., Molldrem J.J., Glish G.L., Armistead P.M., Alatrash G., A novel HLA-A*0201 restricted peptide derived from cathepsin G is an effective immunotherapeutic target in acute myeloid leukemia, Clin Cancer Res., 19(1) (2013) 247-257.

Multipl Myeloma'li Hastalarda Serum Katepsin G Düzeyinin Belirlenmesi

Year 2024, , 263 - 267, 30.06.2024
https://doi.org/10.17776/csj.1453805

Abstract

References

  • [1] Rajkumar SV., Multiple myeloma: Every year a new standard?, Hematological oncology, 37 (2019) 62-65.
  • [2] Zamolodchikova T.S., Tolpygo S.M., Svirshchevskaya E.V., Cathepsin G—not only inflammation: the immune protease can regulate normal physiological processes, Frontiers in immunology, 11 (2020) 411.
  • [3] Wang J., Sjöberg S., Tang T.T., Oörni K., Wu W., Liu C., Secco B., Tia V., Sukhova G.K., Fernandes C., Lesner A., Kovanen P.T., Libby P., Cheng X., Shi G.P., Cathepsin G activity lowers plasma LDL and reduces atherosclerosis, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(11) (2014) 2174-2183.
  • [4] Tazawa H., Okada F., Kobayashi T., Tada M., Mori Y., Une Y., Sendo F., Kobayashi M., Hosokawa M., Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression, American Journal of Pathology, 163(6) (2003) 2221– 2232.
  • [5] Smith H.A., Kang Y., The metastasis-promoting roles of tumor-associated immune cells, J Mol Med., 91(4) (2013) 411–429.
  • [6] Fridlender Z.G., Albelda S.M., Tumor associated neutrophils: friend or foe?, Carcinogenesis, 33(5) (2012) 949–955.
  • [7] Pham C.T., Neutrophil serine proteases: specific regulators of inflammation, Nat Rev Immunol., 6(7) (2006) 541–550.
  • [8] Martins-Cardoso K., Almeida V.H., Bagri K.M., Rossi M.I.D., Mermelstein C.S., König S., Monteiro R.Q., Neutrophil extracellular traps (Nets) promote pro-metastatic phenotype in human breast cancer cells through epithelial–mesenchymal transition, Cancers, 12(6) (2020) 1542.
  • [9] Li Y., Yang Y., Gan T., Zhou J., Hu F., Hao N., Yuan B., Chen Y., Zhang M., Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps, International journal of oncology, 55(1) (2019) 69-80.
  • [10] Shang A., Gu C., Zhou C., Yang Y., Chen C., Zeng B., Wu J., Lu W., Wang W., Sun Z., Li D., Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression, Cell Communication and Signaling, 18(1) (2020) 1-14.
  • [11] Yu M., Li T., Li B., Liu Y., Wang L., Zhang J., Jin J., Guan Y., Zuo N., Liu W., Jing H., Li Y., Du J., Dong Z., Jiang T., Xie R., Zhou J., Shi J., Phosphatidylserine-exposing blood cells, microparticles and neutrophil extracellular traps increase procoagulant activity in patients with pancreatic cancer, Thrombosis Research, 188 (2020) 5-16.
  • [12] Schedel F., Mayer-Hain S., Pappelbaum K.I., Metze D., Stock M., Goerge T., Loser K., Sunderkötter C., Luger T.A., Weishaupt C., Evidence and Impact of Neutrophil ExtracellularTraps in Malignant Melanoma, Pigment Cell Melanoma Res., 33(1) (2020) 63–73.
  • [13] Zha C., Meng X., Li L., Mi S., Qian D., Li Z., Wu P., Hu S., Zhao S., Cai J., Liu Y., Neutrophil Extracellular Traps Mediate the Crosstalk Between Glioma Progression and the Tumor Microenvironment via the HMGB1/RAGE/IL-8 Axis, Cancer Biol Med., 17(1) (2020) 154–168.
  • [14] Li M., Lin C., Deng H., Strnad J., Bernabei L., Vogl D.T., Burke J.J., Nefedova Y., A Novel Peptidylarginine Deiminase 4 (PAD4) Inhibitor BMS-P5 Blocks Formation of Neutrophil Extracellular Traps and Delays Progression of Multiple Myeloma, Mol Cancer Ther., 19(7) (2020) 1530-1538.
  • [15] Yui S., Osawa Y., Ichisugi T., Morimoto-Kamata R., Neutrophil Cathepsin G, but Not Elastase, Induces Aggregation of MCF-7 Mammary Carcinoma Cells by a Protease Activity-Dependent Cell-Oriented Mechanism, Mediators Inflamm., 2014(1) (2014) 971409.
  • [16] Yui S., Tomita K., Kudo T., Ando S., Yamazaki M., Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase, Cancer Science, 96(9) (2005) 560–570.
  • [17] Cools-Lartigue J., Spicer J., Najmeh S., Ferri L., Neutrophil extracellular traps in cancer progression, Cell Mol Life Sci., 71(21) (2014) 4179–4194.
  • [18] Wilson T.J., Nannuru K.C., Futakuchi M., Sadanandam A., Singh R.K., Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand, Cancer Res., 68(14) (2008) 5803–5811.
  • [19] Kudo T., Kigoshi H., Hagiwara T., Takino T., Yamazaki M., Yui S., Cathepsin G, a neutrophil protease, induces compact cell-cell adhesion in MCF-7 human breast cancer cells, Mediators Inflamm., 2009(1) (2009) 850940.
  • [20] Garwicz D., Lennartsson A., Jacobsen S.E., Gullberg U., Lindmark A., Biosynthetic profiles of neutrophil serine proteases in a human bone marrow-derived cellular myeloid differentiation model, Haematologica, 90(1) (2005) 38–44.
  • [21] Zhang M., Sukhumalchandra P., Enyenihi A.A., St John L.S., Hunsucker S.A., Mittendorf E.A., Sergeeva A., Ruisaard K., Al-Atrache Z., Ropp P.A., Jakher H., Rodriguez-Cruz T., Lizee G., Clise-Dwyer K., Lu S., Molldrem J.J., Glish G.L., Armistead P.M., Alatrash G., A novel HLA-A*0201 restricted peptide derived from cathepsin G is an effective immunotherapeutic target in acute myeloid leukemia, Clin Cancer Res., 19(1) (2013) 247-257.
There are 21 citations in total.

Details

Primary Language English
Subjects Enzymes
Journal Section Natural Sciences
Authors

Hatice Terzi 0000-0003-3471-1305

Publication Date June 30, 2024
Submission Date March 16, 2024
Acceptance Date June 13, 2024
Published in Issue Year 2024

Cite

APA Terzi, H. (2024). Determination of Serum Cathepsin G Level in Patients with Multiple Myeloma. Cumhuriyet Science Journal, 45(2), 263-267. https://doi.org/10.17776/csj.1453805