Research Article
BibTex RIS Cite

A Study on the Growth Conditions Role in Defining InGaAs Epitaxial Layer Quality

Year 2024, , 400 - 406, 30.06.2024
https://doi.org/10.17776/csj.1441702

Abstract

This study delves into the epitaxial growth and characterization of InxGa1-xAs layers on InP substrate, a critical area in the development of high-performance III-V semiconductor devices. InxGa1-xAs is renowned for its superior electron mobility and broad spectral response, making it indispensable in applications ranging from photodetectors to quantum cascade lasers. Employing a horizontal flow reactor MOVPE (metal-organic vapor phase epitaxy) technique, we meticulously grew n-InxGa1-xAs epilayers under varying conditions to investigate the impact of indium content, growth temperature, and V/III ratio on the material's structural, optical, and electrical properties. HRXRD (High-resolution X-ray diffraction) and Hall-effect measurements provided insights into the correlation between growth parameters and epitaxial layer quality, including dislocation density and carrier mobility. Our findings highlight the delicate balance required in the growth process to optimize the InxGa1-xAs /InP structure's performance for advanced semiconductor applications. The research underscores the potential of tailored InxGa1-xAs layers to push the boundaries of current photonics and optoelectronics technologies, emphasizing the importance of growth condition optimization for enhancing device efficiency and thermal stability.

References

  • [1] Nee T.W., Green, A.K., Optical properties of InGaAs lattice‐matched to InP, J. Appl. Phys., 68 (10) (1990) 5314-5317.
  • [2] Zhao L., Guo Z., Wei Q., Miao Q., Zhao L., The relationship between the dislocations and microstructure in In0.82Ga0.18As/InP heterostructures, Sci. Rep., 6 (1) (2016) 1-7.
  • [3] Smiri B., Arbia M.B., Demir I., Saidi F., Othmen Z., Dkhil B., Altuntas I., Elagoz S., Hassen F., Maaref H., Optical and structural properties of In-rich InxGa1− xAs epitaxial layers on (1 0 0) InP for SWIR detectors, Mater. Sci. Eng. B., 262 (2020) 114769.
  • [4] Buckley D. N., The effect of gas phase growth parameters on the composition of InGaAs in the hydride VPE process, J. Electron. Mater., 17 (1) (1988) 15-20.
  • [5] Vallejo K.D., Cabrera-Perdomo C.I., Garrett T.A., Drake M.D., Liang B., Grossklaus K.A., and Simmonds P.J., Tunable Mid-Infrared Interband Emission from Tensile-Strained InGaAs Quantum Dots, ACS Nano, 17 (3) (2023) 2318–2327.
  • [6] Yan Z., Shi T., Fan Y., Zhou L. and Yuan Z., Compact InGaAs/InP single-photon detector module with ultra-narrowband interference circuits, Advanced Devices & Instrumentation 4, (2023) 0029.
  • [7] Kalyon G., Mutlu S., Kuruoglu F., Pertikel I., Demir I., Erol A., InGaAs-based Gunn light emitting diode, Mater. Sci. Semicond. Process 159, (2023) 107-389.
  • [8] Asar T., Özçelik S., Özbay E., Structural and electrical characterizations of InxGa1-xAs/InP structures for infrared photodetector applications, J. Appl. Phys., 115 (10) (2014) 104502.
  • [9] Eckl J. J., Schreiber K. U., Schüler T., Satellite laser ranging in the near-infrared regime, Photon Counting Applications-SPIE, (2017) 10229 75-81.
  • [10] Ma J., Bai B., Wang L.J., Tong C.Z., Jin G., Zhang J., Pan J.W., Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution, Appl. Opt., 55 (27) (2016) 7497-7502.
  • [11] Cova S., Ghioni M., Itzler M. A., Bienfang J. C., Restelli A., Semiconductor-based detectors, Experimental Methods in the Physical Sciences, 45 (2013) 83-146.
  • [12] Tosi A., Acerbi F., Dalla Mora A., Itzler M.A., Jiang X., Active area uniformity of InGaAs/InP single-photon avalanche diodes, IEEE Photonics J., 3 (1) (2010) 31-41.
  • [13] Itzler M.A., Jiang X., Entwistle M., Slomkowski K., Tosi A., Acerbi F., Zappa F. and Cova S., Advances in InGaAsP-based avalanche diode single photon detectors, J. Mod. Opt., 58 (3-4) (2011) 174-200.
  • [14] Jiang X., Itzler M. A., Ben-Michael R., Slomkowski K., InGaAsP–InP avalanche photodiodes for single photon detection, IEEE J. Sel. Top. Quantum Electron., 13 (4) (2007) 895-905.
  • [15] Dupuis R.D., III–V semiconductor devices grown by metalorganic chemical vapor deposition—The development of the Swiss Army Knife for semiconductor epitaxial growth, J. Vac. Sci. Technol. B, 41 (6) (2023).
  • [16] Unal D.H., Demir I., InGaAs-Based MSM Photodetector: Researching Absorption Layer, Barrier Layer, and Digital Graded Superlattice Layer with 3D Simulation, Results Opt., 13 (2023) 100581.
  • [17] Perkitel I., Demir I., Effect of Si-doped and undoped inter-layer transition time on the strain-compensated InGaAs/InAlAs QCL active region grown with MOVPE, J. Mol. Struct., 1272 (2023) 134203.
  • [18] Arbia M.B., Demir I., Kaur N., Saidi F., Zappa D., Comini E., Altuntaş I. and Maaref H., Experimental insights toward carrier localization in in-rich InGaAs/InP as candidate for SWIR detection: Microstructural analysis combined with optical investigation, Mater. Sci. Semicond. Process., 153 (2023) 107149
  • [19] Badreddine S., Joshya R.S., Ilkay D., Faouzi S., Ismail A., Lagarde D., Rober C., Xavier M., Hassen M., Systematic optical study of high-x InxGa1-xAs/InP structures for infrared photodetector applications, Opt. Laser Technol., 148 (2022) 107714.
  • [20] Arbia M.B., Smiri B., Demir I., Saidi F., Altuntas I., Hassen F. and Maaref H., Theoretical analyses of the carrier localization effect on the photoluminescence of In-rich InGaAs layer grown on InP, Mater. Sci. Semicond. Process., 140 (2022) 106411.
  • [21] Demir I., Altuntas I., and Elagoz S., Arsine flow rate effect on the low growth rate epitaxial InGaAs layers, Semiconductors 55 (10) (2021) 816-822.
  • [22] Alaydın B. O., Tüzemen E. S., Demir I., and Elagöz S., Optical and Structural Properties of MOCVD Grown InxGa1-xAs Epilayers, Cumhuriyet Sci. J., 38 (4) (2017) 681-689.
  • [23] Gu Y., Huang W., Liu Y., Ma Y., Zhang J., Gong Q., Zhang Y., Shao X., Li X. and Gong H., Effects of buffer doping on the strain relaxation of metamorphic InGaAs photodetector structures, Mater. Sci. Semicond. Process., 120 (2020) 105281.
  • [24] Kaynar E., Sayrac M., Altuntas I., and Demir I., Determination of Optical Properties of MOVPE-Grown InxGa1-xAs/InP Epitaxial Structures by Spectroscopic Ellipsometry, Braz. J. Phys., 52 (5) (2022) 184.
  • [25] Demir I., Altuntas I., Bulut B., Ezzedini M., Ergun Y. and Elagoz S., Comprehensive growth and characterization study on highly n-doped InGaAs as a contact layer for quantum cascade laser applications, Semicond. Sci. Technol., 33, (5) (2018) 055005.
  • [26] Olausson P. and Lind E., Geometrical magnetoresistance as a tool for carrier mobility extraction in InGaAs MOSFETs, IEEE Trans. Electron Devices, (2023).
  • [27] Yang B., Yu Y., Zhang G., Shao X. and Li X., Design and Fabrication of Broadband InGaAs Detectors Integrated with Nanostructures, Sensors, 23 (14) (2023) 6556.
  • [28] Jiang L., Lin T., Wei X., Wang G.H., Zhang,G.Z., Zhang H.B. and Ma X.Y., Effects of V/III ratio on InGaAs and InP grown at low temperature by LP-MOCVD, J. Cryst. Growth, 260 (1-2) (2004) 23-27.
Year 2024, , 400 - 406, 30.06.2024
https://doi.org/10.17776/csj.1441702

Abstract

References

  • [1] Nee T.W., Green, A.K., Optical properties of InGaAs lattice‐matched to InP, J. Appl. Phys., 68 (10) (1990) 5314-5317.
  • [2] Zhao L., Guo Z., Wei Q., Miao Q., Zhao L., The relationship between the dislocations and microstructure in In0.82Ga0.18As/InP heterostructures, Sci. Rep., 6 (1) (2016) 1-7.
  • [3] Smiri B., Arbia M.B., Demir I., Saidi F., Othmen Z., Dkhil B., Altuntas I., Elagoz S., Hassen F., Maaref H., Optical and structural properties of In-rich InxGa1− xAs epitaxial layers on (1 0 0) InP for SWIR detectors, Mater. Sci. Eng. B., 262 (2020) 114769.
  • [4] Buckley D. N., The effect of gas phase growth parameters on the composition of InGaAs in the hydride VPE process, J. Electron. Mater., 17 (1) (1988) 15-20.
  • [5] Vallejo K.D., Cabrera-Perdomo C.I., Garrett T.A., Drake M.D., Liang B., Grossklaus K.A., and Simmonds P.J., Tunable Mid-Infrared Interband Emission from Tensile-Strained InGaAs Quantum Dots, ACS Nano, 17 (3) (2023) 2318–2327.
  • [6] Yan Z., Shi T., Fan Y., Zhou L. and Yuan Z., Compact InGaAs/InP single-photon detector module with ultra-narrowband interference circuits, Advanced Devices & Instrumentation 4, (2023) 0029.
  • [7] Kalyon G., Mutlu S., Kuruoglu F., Pertikel I., Demir I., Erol A., InGaAs-based Gunn light emitting diode, Mater. Sci. Semicond. Process 159, (2023) 107-389.
  • [8] Asar T., Özçelik S., Özbay E., Structural and electrical characterizations of InxGa1-xAs/InP structures for infrared photodetector applications, J. Appl. Phys., 115 (10) (2014) 104502.
  • [9] Eckl J. J., Schreiber K. U., Schüler T., Satellite laser ranging in the near-infrared regime, Photon Counting Applications-SPIE, (2017) 10229 75-81.
  • [10] Ma J., Bai B., Wang L.J., Tong C.Z., Jin G., Zhang J., Pan J.W., Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution, Appl. Opt., 55 (27) (2016) 7497-7502.
  • [11] Cova S., Ghioni M., Itzler M. A., Bienfang J. C., Restelli A., Semiconductor-based detectors, Experimental Methods in the Physical Sciences, 45 (2013) 83-146.
  • [12] Tosi A., Acerbi F., Dalla Mora A., Itzler M.A., Jiang X., Active area uniformity of InGaAs/InP single-photon avalanche diodes, IEEE Photonics J., 3 (1) (2010) 31-41.
  • [13] Itzler M.A., Jiang X., Entwistle M., Slomkowski K., Tosi A., Acerbi F., Zappa F. and Cova S., Advances in InGaAsP-based avalanche diode single photon detectors, J. Mod. Opt., 58 (3-4) (2011) 174-200.
  • [14] Jiang X., Itzler M. A., Ben-Michael R., Slomkowski K., InGaAsP–InP avalanche photodiodes for single photon detection, IEEE J. Sel. Top. Quantum Electron., 13 (4) (2007) 895-905.
  • [15] Dupuis R.D., III–V semiconductor devices grown by metalorganic chemical vapor deposition—The development of the Swiss Army Knife for semiconductor epitaxial growth, J. Vac. Sci. Technol. B, 41 (6) (2023).
  • [16] Unal D.H., Demir I., InGaAs-Based MSM Photodetector: Researching Absorption Layer, Barrier Layer, and Digital Graded Superlattice Layer with 3D Simulation, Results Opt., 13 (2023) 100581.
  • [17] Perkitel I., Demir I., Effect of Si-doped and undoped inter-layer transition time on the strain-compensated InGaAs/InAlAs QCL active region grown with MOVPE, J. Mol. Struct., 1272 (2023) 134203.
  • [18] Arbia M.B., Demir I., Kaur N., Saidi F., Zappa D., Comini E., Altuntaş I. and Maaref H., Experimental insights toward carrier localization in in-rich InGaAs/InP as candidate for SWIR detection: Microstructural analysis combined with optical investigation, Mater. Sci. Semicond. Process., 153 (2023) 107149
  • [19] Badreddine S., Joshya R.S., Ilkay D., Faouzi S., Ismail A., Lagarde D., Rober C., Xavier M., Hassen M., Systematic optical study of high-x InxGa1-xAs/InP structures for infrared photodetector applications, Opt. Laser Technol., 148 (2022) 107714.
  • [20] Arbia M.B., Smiri B., Demir I., Saidi F., Altuntas I., Hassen F. and Maaref H., Theoretical analyses of the carrier localization effect on the photoluminescence of In-rich InGaAs layer grown on InP, Mater. Sci. Semicond. Process., 140 (2022) 106411.
  • [21] Demir I., Altuntas I., and Elagoz S., Arsine flow rate effect on the low growth rate epitaxial InGaAs layers, Semiconductors 55 (10) (2021) 816-822.
  • [22] Alaydın B. O., Tüzemen E. S., Demir I., and Elagöz S., Optical and Structural Properties of MOCVD Grown InxGa1-xAs Epilayers, Cumhuriyet Sci. J., 38 (4) (2017) 681-689.
  • [23] Gu Y., Huang W., Liu Y., Ma Y., Zhang J., Gong Q., Zhang Y., Shao X., Li X. and Gong H., Effects of buffer doping on the strain relaxation of metamorphic InGaAs photodetector structures, Mater. Sci. Semicond. Process., 120 (2020) 105281.
  • [24] Kaynar E., Sayrac M., Altuntas I., and Demir I., Determination of Optical Properties of MOVPE-Grown InxGa1-xAs/InP Epitaxial Structures by Spectroscopic Ellipsometry, Braz. J. Phys., 52 (5) (2022) 184.
  • [25] Demir I., Altuntas I., Bulut B., Ezzedini M., Ergun Y. and Elagoz S., Comprehensive growth and characterization study on highly n-doped InGaAs as a contact layer for quantum cascade laser applications, Semicond. Sci. Technol., 33, (5) (2018) 055005.
  • [26] Olausson P. and Lind E., Geometrical magnetoresistance as a tool for carrier mobility extraction in InGaAs MOSFETs, IEEE Trans. Electron Devices, (2023).
  • [27] Yang B., Yu Y., Zhang G., Shao X. and Li X., Design and Fabrication of Broadband InGaAs Detectors Integrated with Nanostructures, Sensors, 23 (14) (2023) 6556.
  • [28] Jiang L., Lin T., Wei X., Wang G.H., Zhang,G.Z., Zhang H.B. and Ma X.Y., Effects of V/III ratio on InGaAs and InP grown at low temperature by LP-MOCVD, J. Cryst. Growth, 260 (1-2) (2004) 23-27.
There are 28 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Natural Sciences
Authors

Meryem Demir 0009-0009-1234-0081

Sezai Elagöz 0000-0002-3600-8640

Publication Date June 30, 2024
Submission Date February 22, 2024
Acceptance Date March 11, 2024
Published in Issue Year 2024

Cite

APA Demir, M., & Elagöz, S. (2024). A Study on the Growth Conditions Role in Defining InGaAs Epitaxial Layer Quality. Cumhuriyet Science Journal, 45(2), 400-406. https://doi.org/10.17776/csj.1441702