The Nonlinear Optical Properties of Self-Assembled InAs/GaAs Quantum Dot: Effect of Hydrostatic Pressure and Temperature
Year 2024,
, 386 - 393, 30.06.2024
M. Jaouane
,
K. El-bakkari
,
Emre Bahadır Al
,
A. Sali
,
Fatih Ungan
Abstract
In this study, we have investigated the effects of temperature (T) and hydrostatic pressure (P) on both the nonlinear and linear optical properties of an InAs/GaAs core/shell quantum dot (QD) system with a Screened-Modified Kratzer potential (SMKP). To achieve this objective, we calculated the energy levels and their corresponding wave functions of the structure using the diagonalization method within the framework of the effective mass approximation. Analytical expressions for the absorption coefficients (ACs) and relative refractive index changes (RRICs) were derived using the compact-density-matrix approach. In our numerical calculations, we first determined the variation of the SMKP dependence, the dipole transition matrix element, and the electron energies of the ground (1s) and first excited state (1p) over a range of hydrostatic pressure (P) and temperature (T). As a result, the obtained numerical calculations revealed that changes in P and T influence both the magnitude and position of the resonant peaks that define the ACs and RRICs
References
- [1] Yesilgul U., Ungan F., Sakiroglu S., Sari H., Kasapoglu E., Sökmen I., Nonlinear optical properties of a semi-exponential quantum wells: Effect of high-frequency intense laser field, Optik (Stuttg)., 185 (2019) 311–316.
- [2] Belaid W., El Ghazi H., Zaki S.E., Basyooni M.A., Tihtih M., Ennadir R., Kılıç H.Ş., Zorkani I., Jorio A., A theoretical study of the effects of electric field, hydrostatic pressure, and temperature on photoionization cross-section of a donor impurity in (Al, Ga)N/AlN double triangular quantum wells, Phys. Scr., 98 (2023) 045913.
- [3] Sali A., Fliyou M., Satori H., Loumrhari H., Photoionization of Impurities in Quantum-Well Wires, Phys. Status Solidi., 211 (1999) 661–670.
- [4] Sali A., Satori H., The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation, Superlattices Microstruct., 69 (2014) 38–52.
- [5] Fakkahi A., Sali A., Jaouane M., Arraoui R., Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot, Appl. Phys. A., 127 (2021) 908.
- [6] Fakkahi A., Sali A., Jaouane M., Arraoui R., A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot, Physica E., 143 (2022) 115351.
- [7] El-Bakkari K., Sali A., Iqraoun E., Ezzarfi A., Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings, Superlattices Microstruct., 148 (2020) 106729.
- [8] Arraoui R., Sali A., Ed-Dahmouny A., Jaouane M., Fakkahi A., Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot, Superlattices Microstruct., 159 (2021) 107049.
- [9] Ed-Dahmouny A., Sali A., Es-Sbai N., Arraoui R., Jaouane M., Fakkahi A., El-Bakkari K., Duque C.A., Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs/Ga 1-x Al x As quantum dots, Eur. Phys. J. B., 95 (2022).
- [10] Jaouane M., Sali A., Kasapoglu E., Ungan F., Tuning of nonlinear optical characteristics of a cylindrical quantum dot by external fields and structure parameters, Philos. Mag., (2023) 1–19.
- [11] Jaouane M., Sali A., A. Ezzarfi A., A. Fakkahi A., Arraoui R., Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots, Physica E., 127 (2021) 114543.
- [12] Jaouane M., Fakkahi A., Ed-Dahmouny A., El-Bakkari K., Tuzemen A.T., Arraoui R., Sali A., Ungan F., Modeling and simulation of the influence of quantum dots density on solar cell properties, Eur. Phys. J. Plus., 138 (2023) 148.
- [13] Ed-Dahmouny A., Zeiri N., Fakkahi A., Arraoui R., Jaouane M., Sali A., Es-Sbai N., El-Bakkari K., Duque C.A., Impurity photo-ionization cross section and stark shift of ground and two low-lying excited electron-states in a core/shell ellipsoidal quantum dot, Chem. Phys. Lett., 812 (2023) 140251.
- [14] Tiutiunnyk A., Tulupenko V., Mora-Ramos M.E., Kasapoglu E., Ungan F., Sari H., Sökmen I., Duque C.A., Electron-related optical responses in triangular quantum dots, Physica E., 60 (2014) 127–132.
- [15] Li G.H., Goñi A.R., Abraham C., Syassen K., Santos P.V., Cantarero A., Brandt O., Ploog K., Photoluminescence from strained InAs monolayers in GaAs under pressure, Phys. Rev. B., 50 (1994) 1575–1581.
- [16] Du Park G., Du Ha J., Kang T.I., Kim J.S., Kim Y., Lee S.J., Han I.S., Investigation of junction electric fields for InAs quantum dot solar cells with photoreflectance spectroscopy, Curr. Appl. Phys., 50 (2023) 46–52.
- [17] Zhou P.Y., Dou X.M., Wu X.F., Ding K., Li M.F., Ni H.Q., Niu Z.C., Jiang D.S., Sun B.Q., Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes, Sci. Rep., 4 (2014) 3633.
- [18] Bimberg D., Ledentsov N.N., Grundmann M., Kirstaedter N., Schmidt O.G., Mao M.H., Ustinov V.M., Egorov A.Y., Zhukov A.E., Kopév P.S., Alferov Z.I., Ruvimov S.S., Gösele U., Heydenreich J., InAs-GaAs quantum pyramid lasers: In situ growth, radiative lifetimes and polarization properties, Japanese J. Appl. Physics., 35 (1996) 1311–1319.
- [19] Wang T., Lee A., Tutu F., Seeds A., Liu H., Jiang Q., Groom K., Hogg R., The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates, Appl. Phys. Lett., 100 (2012) 052113.
- [20] Li C., Nonlinear Optics, Springer Singapore, Singapore, 2017.
- [21] Al E.B., Ungan F., Yesilgul U., Kasapoglu E., Sari H., Sökmen I., Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs/Ga1-xAlxAs double inverse parabolic quantum well, Opt. Mater., 47 (2015) 1–6.
- [22] Ungan F., Martínez-Orozco J.C., Restrepo R.L., Mora-Ramos M.E., Kasapoglu E., Duque C.A., Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields, Superlattices Microstruct., 81 (2015) 26–33.
- [23] Jaouane M., Sali A., Fakkahi A., Arraoui R., Ungan F., The effects of temperature and pressure on the optical properties of a donor impurity in (In,Ga)N/GaN multilayer cylindrical quantum dots, Micro and Nanostructures, 163 (2022) 107146.
- [24] Jaouane M., El-Bakkari K., Al E.B., Sali A., Ungan F., Linear and nonlinear optical properties of CdSe/ZnTe core/shell nanostructures with screened modified Kratzer potential, Eur. Phys. J. Plus., 138 (2023) 319.
- [25] Edet C.O., Al E.B., Ungan F., Ali N., Ramli M.M., Asjad M., Effects of the confinement potential parameters and optical intensity on the linear and nonlinear optical properties of spherical quantum dots, Results Phys., 44 (2023) 106182.
- [26] Edet C.O., Al E.B., Ungan F., Ali N., Rusli N., Aljunid S.A., Endut R., Asjad M., Effects of Applied Magnetic Field on the Optical Properties and Binding Energies Spherical GaAs Quantum Dot with Donor Impurity, Nanomaterials., 12 (2022) 2741.
- [27] Makhlouf D., Choubani M., Saidi F., Maaref H., Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shell quantum dot, Mater. Chem. Phys., 267 (2021) 124660.
- [28] Makhlouf D., Choubani M., Saidi F., Maaref H., Modeling of the second harmonic generation in a lens-shaped InAs/GaAs quantum core/shell dot under temperature, pressure and applied electric field effects, Results Phys., 16 (2020) 102961.
- [29] Makhlouf D., Choubani M., Saidi F., Maaref H., Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shell quantum dot, Mater. Chem. Phys., 267 (2021) 124660.
- [30] Edet C.O., Al E.B., Ungan F., Ali N., Rusli N., Aljunid S.A., Endut R., Asjad M., Effects of Applied Magnetic Field on the Optical Properties and Binding Energies Spherical GaAs Quantum Dot with Donor Impurity, Nanomaterials., 12 (2022) 2741.
- [31] Al E.B., Peter A.J., Mora-Ramos M.E., Ungan F., Theoretical investigation of nonlinear optical properties of Mathieu quantum well, Eur. Phys. J. Plus, 138 (2023) 49.
- [32] Oubram O., Rodríguez-Vargas I., Martínez-Orozco J.C., Refractive index changes in n-type delta-doped GaAs under hydrostatic pressure, Rev. Mex. Fis., 60 (2014) 161–167.
- [33] Liang S., Xie W., Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot, Physica B., 406 (2011) 2224–2230.
- [34] Farkoush B.A, Safarpour G., Zamani A., Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature, Superlattices Microstruct., 59 (2013) 66–76.
- [35] Rezaei G., Kish S.S., Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields, Superlattices Microstruct., 53 (2013) 99–112.
- [36] Zhang Z.H., Yuan J.H., Guo K.X., The combined influence of hydrostatic pressure and temperature on nonlinear optical properties of GaAs/Ga0.7Al0.3As morse quantum well in the presence of an applied magnetic field, Materials., 11 (2018) 668.
Year 2024,
, 386 - 393, 30.06.2024
M. Jaouane
,
K. El-bakkari
,
Emre Bahadır Al
,
A. Sali
,
Fatih Ungan
References
- [1] Yesilgul U., Ungan F., Sakiroglu S., Sari H., Kasapoglu E., Sökmen I., Nonlinear optical properties of a semi-exponential quantum wells: Effect of high-frequency intense laser field, Optik (Stuttg)., 185 (2019) 311–316.
- [2] Belaid W., El Ghazi H., Zaki S.E., Basyooni M.A., Tihtih M., Ennadir R., Kılıç H.Ş., Zorkani I., Jorio A., A theoretical study of the effects of electric field, hydrostatic pressure, and temperature on photoionization cross-section of a donor impurity in (Al, Ga)N/AlN double triangular quantum wells, Phys. Scr., 98 (2023) 045913.
- [3] Sali A., Fliyou M., Satori H., Loumrhari H., Photoionization of Impurities in Quantum-Well Wires, Phys. Status Solidi., 211 (1999) 661–670.
- [4] Sali A., Satori H., The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation, Superlattices Microstruct., 69 (2014) 38–52.
- [5] Fakkahi A., Sali A., Jaouane M., Arraoui R., Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot, Appl. Phys. A., 127 (2021) 908.
- [6] Fakkahi A., Sali A., Jaouane M., Arraoui R., A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot, Physica E., 143 (2022) 115351.
- [7] El-Bakkari K., Sali A., Iqraoun E., Ezzarfi A., Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings, Superlattices Microstruct., 148 (2020) 106729.
- [8] Arraoui R., Sali A., Ed-Dahmouny A., Jaouane M., Fakkahi A., Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot, Superlattices Microstruct., 159 (2021) 107049.
- [9] Ed-Dahmouny A., Sali A., Es-Sbai N., Arraoui R., Jaouane M., Fakkahi A., El-Bakkari K., Duque C.A., Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs/Ga 1-x Al x As quantum dots, Eur. Phys. J. B., 95 (2022).
- [10] Jaouane M., Sali A., Kasapoglu E., Ungan F., Tuning of nonlinear optical characteristics of a cylindrical quantum dot by external fields and structure parameters, Philos. Mag., (2023) 1–19.
- [11] Jaouane M., Sali A., A. Ezzarfi A., A. Fakkahi A., Arraoui R., Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots, Physica E., 127 (2021) 114543.
- [12] Jaouane M., Fakkahi A., Ed-Dahmouny A., El-Bakkari K., Tuzemen A.T., Arraoui R., Sali A., Ungan F., Modeling and simulation of the influence of quantum dots density on solar cell properties, Eur. Phys. J. Plus., 138 (2023) 148.
- [13] Ed-Dahmouny A., Zeiri N., Fakkahi A., Arraoui R., Jaouane M., Sali A., Es-Sbai N., El-Bakkari K., Duque C.A., Impurity photo-ionization cross section and stark shift of ground and two low-lying excited electron-states in a core/shell ellipsoidal quantum dot, Chem. Phys. Lett., 812 (2023) 140251.
- [14] Tiutiunnyk A., Tulupenko V., Mora-Ramos M.E., Kasapoglu E., Ungan F., Sari H., Sökmen I., Duque C.A., Electron-related optical responses in triangular quantum dots, Physica E., 60 (2014) 127–132.
- [15] Li G.H., Goñi A.R., Abraham C., Syassen K., Santos P.V., Cantarero A., Brandt O., Ploog K., Photoluminescence from strained InAs monolayers in GaAs under pressure, Phys. Rev. B., 50 (1994) 1575–1581.
- [16] Du Park G., Du Ha J., Kang T.I., Kim J.S., Kim Y., Lee S.J., Han I.S., Investigation of junction electric fields for InAs quantum dot solar cells with photoreflectance spectroscopy, Curr. Appl. Phys., 50 (2023) 46–52.
- [17] Zhou P.Y., Dou X.M., Wu X.F., Ding K., Li M.F., Ni H.Q., Niu Z.C., Jiang D.S., Sun B.Q., Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes, Sci. Rep., 4 (2014) 3633.
- [18] Bimberg D., Ledentsov N.N., Grundmann M., Kirstaedter N., Schmidt O.G., Mao M.H., Ustinov V.M., Egorov A.Y., Zhukov A.E., Kopév P.S., Alferov Z.I., Ruvimov S.S., Gösele U., Heydenreich J., InAs-GaAs quantum pyramid lasers: In situ growth, radiative lifetimes and polarization properties, Japanese J. Appl. Physics., 35 (1996) 1311–1319.
- [19] Wang T., Lee A., Tutu F., Seeds A., Liu H., Jiang Q., Groom K., Hogg R., The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates, Appl. Phys. Lett., 100 (2012) 052113.
- [20] Li C., Nonlinear Optics, Springer Singapore, Singapore, 2017.
- [21] Al E.B., Ungan F., Yesilgul U., Kasapoglu E., Sari H., Sökmen I., Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs/Ga1-xAlxAs double inverse parabolic quantum well, Opt. Mater., 47 (2015) 1–6.
- [22] Ungan F., Martínez-Orozco J.C., Restrepo R.L., Mora-Ramos M.E., Kasapoglu E., Duque C.A., Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields, Superlattices Microstruct., 81 (2015) 26–33.
- [23] Jaouane M., Sali A., Fakkahi A., Arraoui R., Ungan F., The effects of temperature and pressure on the optical properties of a donor impurity in (In,Ga)N/GaN multilayer cylindrical quantum dots, Micro and Nanostructures, 163 (2022) 107146.
- [24] Jaouane M., El-Bakkari K., Al E.B., Sali A., Ungan F., Linear and nonlinear optical properties of CdSe/ZnTe core/shell nanostructures with screened modified Kratzer potential, Eur. Phys. J. Plus., 138 (2023) 319.
- [25] Edet C.O., Al E.B., Ungan F., Ali N., Ramli M.M., Asjad M., Effects of the confinement potential parameters and optical intensity on the linear and nonlinear optical properties of spherical quantum dots, Results Phys., 44 (2023) 106182.
- [26] Edet C.O., Al E.B., Ungan F., Ali N., Rusli N., Aljunid S.A., Endut R., Asjad M., Effects of Applied Magnetic Field on the Optical Properties and Binding Energies Spherical GaAs Quantum Dot with Donor Impurity, Nanomaterials., 12 (2022) 2741.
- [27] Makhlouf D., Choubani M., Saidi F., Maaref H., Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shell quantum dot, Mater. Chem. Phys., 267 (2021) 124660.
- [28] Makhlouf D., Choubani M., Saidi F., Maaref H., Modeling of the second harmonic generation in a lens-shaped InAs/GaAs quantum core/shell dot under temperature, pressure and applied electric field effects, Results Phys., 16 (2020) 102961.
- [29] Makhlouf D., Choubani M., Saidi F., Maaref H., Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shell quantum dot, Mater. Chem. Phys., 267 (2021) 124660.
- [30] Edet C.O., Al E.B., Ungan F., Ali N., Rusli N., Aljunid S.A., Endut R., Asjad M., Effects of Applied Magnetic Field on the Optical Properties and Binding Energies Spherical GaAs Quantum Dot with Donor Impurity, Nanomaterials., 12 (2022) 2741.
- [31] Al E.B., Peter A.J., Mora-Ramos M.E., Ungan F., Theoretical investigation of nonlinear optical properties of Mathieu quantum well, Eur. Phys. J. Plus, 138 (2023) 49.
- [32] Oubram O., Rodríguez-Vargas I., Martínez-Orozco J.C., Refractive index changes in n-type delta-doped GaAs under hydrostatic pressure, Rev. Mex. Fis., 60 (2014) 161–167.
- [33] Liang S., Xie W., Effects of the hydrostatic pressure and temperature on optical properties of a hydrogenic impurity in the disc-shaped quantum dot, Physica B., 406 (2011) 2224–2230.
- [34] Farkoush B.A, Safarpour G., Zamani A., Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature, Superlattices Microstruct., 59 (2013) 66–76.
- [35] Rezaei G., Kish S.S., Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields, Superlattices Microstruct., 53 (2013) 99–112.
- [36] Zhang Z.H., Yuan J.H., Guo K.X., The combined influence of hydrostatic pressure and temperature on nonlinear optical properties of GaAs/Ga0.7Al0.3As morse quantum well in the presence of an applied magnetic field, Materials., 11 (2018) 668.