Research Article
BibTex RIS Cite

Synthesis and Characterization of Novel 2,4-Diaryloctahydro-2H-Chromene Derivatives with Four Stereocenters

Year 2023, , 678 - 686, 28.12.2023
https://doi.org/10.17776/csj.1341173

Abstract

Chromene derivatives are among the natural compounds and they can also be easily obtained synthetically. They are one of the most commonly used skeletons in heterocyclic chemistry. Chromene derivatives are used in the cosmetic and pigment industries as well as having a wide spectrum of biological activity. Synthesis of chromene derivatives and their application areas is a current topic. In this study, it is aimed to synthesis and characterization of new chromene derivatives by catalysis of molecular iodine starting from 1,5-diol derivatives with chiral centers. In this context, 8 new 2,4-diaryloctahydro-2H-chromene derivatives were synthesized in high yields and their structure determinations were made by spectroscopic methods (1H-NMR, 13C-NMR, 2D-NMR, GCMS and FTIR) and their stereochemistry was determined.

Project Number

BAP-201194

References

  • [1] Eicher T., Hauptmann S. & Speichcr, A., The Chemistry of Heterocycles: Structure, Reactions, Synthesis and Applications.2nd ed. Weinheim (2004) 341-345.
  • [2] Wen Z., Yang K.-C., Deng J.-F. & Chen L., Advancements in the preparation of 4H-chromenes: an overview, Advanced Synthesis & Catalysis, 365 (2023) 1290-1331.
  • [3] Singh M. M., Centchroman, a selective estrogen receptor modulator, as a contraceptive and for the management of hormone-related clinical disorders, Medicinal Research Reviews, 21 (2001) 302-347.
  • [4] Hilas O. & Ezzo D., Nebivolol (bystolic), a novel beta blocker for hypertension, Pharmacy and Therapeutics, 34(4) (2009) 188-192.
  • [5] Mamaghani M., Nia H. R., Tavakoli F. & Jahanshahi P., Recent Advances in the MCRs Synthesis of Chromenes: A Review, Current Organic Chemistry, 22(17) (2018) 1704 - 1769.
  • [6] Raj V. & Lee J., 2H/4H-Chromenes-a versatile biologically attractive scaffold, Frontiers in Chemistry, 8(623) (2020) 1-23.
  • [7] Bianchi G. & Tava, A., Synthesis of (2R)-(+)-2,3-Dihydro-2,6-dimethyl-4H-pyran-4-one, a Homologue of Pheromones of a Species in the Hepialidae Family, Agricultural and Biological Chemistry, 51 (1987) 2001-2002.
  • [8] Tangmouo J. G., Meli A. L., Komguem J., Kuete V., Ngounou F. N., Lontsi D., Beng V. P., Houdhary M. L. & Sondengam B. L., Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien), Tetrahedron Letter, 47 (2006) 3067-3070.
  • [9] Kitamura R. O. S., Romoff P., Young M. C. M., Kato M. J. & Lago J. H. G., Chromenes from Peperomia serpens (Sw.) Loudon (Piperaceae), Phytochemistry, 67 (2006) 2398-2402.
  • [10] Ellis G. P., The Chemistry of Heterocyclic Compounds. In: Weissberger, A. & Taylor, E. C. (Eds). Chromenes. Chromanes and Chromones. 2nd ed. New York and London: John Wiley and Sons. (1977) Chapter 11, 11-139.
  • [11] McCracken S. T., Kaiser M., Boshoff H. I., Boyd P. D. W. & Copp B. R., Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers, Bioorganic & Medicinal Chemistry, 20 (2012) 1482-1493.
  • [12] Mohareb R. M. & Schatz J., Anti-tumor and anti-leishmanial evaluations of 1,3,4-oxadiazine, pyran derivatives derived from cross-coupling reactions of β-bromo-6H-1,3,4-oxadiazine derivatives, Bioorganic & Medicinal Chemistry, 19 (2011) 2707-2713.
  • [13] Press J. B., McNally J. J., Sanfilippo P. J., Addo M. F., Loughney D., Giardino E., Katz L. B., Falotico R. & Haertlein B. J., Novel thieno[2,3-b]- and [3,4-b]pyrans as potassium channel openers, Thiophene systems-XVII, Bioorganic & Medicinal Chemistry, 1 (1993) 423-435.
  • [14] Tummino P. J., Prasad J. V. N. V., Ferguson D., Nouhan C., Graham N., Domagala J. M., Ellsworth E., Gajda C., Hagen S. E., Lunney E. A., Para K. S., Tait B. D., Pavlovsky A., Erickson J. W., Gracheck S., McQuade T.J. & Hupe D.J., Discovery and optimization of nonpeptide HIV-1 protease inhibitors, Bioorganic & Medicinal Chemistry, 4 (1996) 1401-1410.
  • [15] Jayaprakasha G. K., Rao L. J. & Sakariah K. K., Antioxidant activities of flavidin in different in vitro model systems, Bioorganic & Medicinal Chemistry, 12 (2004) 5141-5146.
  • [16] Yusubov M.S. & Zhdankin V. V., Iodine catalysis: A green alternative to transition metals in organic chemistry and technology, Resource-Efficient Technologies, 1 (2015) 49-67.
  • [17] Prajapati D. & Gohain M., Iodine a Simple, Effective and Inexpensive Catalyst for the Synthesis of Substituted Coumarins, Catalysis Letters, 119 (2007) 59-63.
  • [18] Zhang H., Wang H., Jiang Y., Cao F., Gao W., Zhu L., Yang Y., Wang X., Wang Y., Chen J., Feng Y., Deng X., Lu Y., Hu X., Li X., Zhang J., Shi T. & Wang Z., Recent Advances in Iodine-Promoted C−S/N−S Bonds Formation, Chemistry-A European Journal, 26 (2020) 17289-17317.
  • [19] Samanta S. & Mondal S., Iodine-Catalyzed or -Mediated Reactions in Aqueous Medium, Asian Journal of Organic Chemistry, 10 (2021) 2503-2520.
  • [20] Breugst M. & von der Heiden D., Mechanisms in Iodine Catalysis, Chemistry-A European Journal, 24 (2018) 9187-9199.
  • [21] Kasashima Y., Fujimoto H., Mino T., Sakamoto M., Fujita T., An Efficient Synthesis of Five-membered Cyclic Ethers from 1,3-Diols Using Molecular Iodine as a Catalyst, Journal of Oleo Science, 57 (2008) 437-443.
  • [22] Gezegen H., Tutar U., & Ceylan M., Synthesis and antimicrobial activity of racemic 1,5-diols: 2-(1,3-diaryl-3-hydroxypropyl)cyclohexan-1-ol derivatives, Helvetica Chimica Acta, 99 (2016) 608-616.
  • [23] Çelik İ., Akkurt M., Gezegen H., Üremiş M. M. & Duteanu N., 2-[1-(4-Bromophenyl)-3-hydroxy-3-(4-methoxyphenyl)propyl]cyclohexanol, Acta Crystallographica Section E, E69 (2013) o1091-o1092.
  • [24] Jereb M. & Vrazic D., Iodine-catalyzed Transformation of Aryl-substituted Alcohols Under Solvent-free and Highly Concentrated Reaction Conditions, Acta Chimica Slovenica, 64 (2017) 747-762.
  • [25] El-Sayed R., Mohamed K.S. & Fadda A. A., Synthesis and evaluation of some chromene derivatives as antioxidant with surface activity, Afinidad Journal of Chemical Engineering Theoretical and Applied Chemistry, 75 (2018) 581, 66-75.
Year 2023, , 678 - 686, 28.12.2023
https://doi.org/10.17776/csj.1341173

Abstract

Supporting Institution

Gaziosmanpaşa Üniversitesi

Project Number

BAP-201194

References

  • [1] Eicher T., Hauptmann S. & Speichcr, A., The Chemistry of Heterocycles: Structure, Reactions, Synthesis and Applications.2nd ed. Weinheim (2004) 341-345.
  • [2] Wen Z., Yang K.-C., Deng J.-F. & Chen L., Advancements in the preparation of 4H-chromenes: an overview, Advanced Synthesis & Catalysis, 365 (2023) 1290-1331.
  • [3] Singh M. M., Centchroman, a selective estrogen receptor modulator, as a contraceptive and for the management of hormone-related clinical disorders, Medicinal Research Reviews, 21 (2001) 302-347.
  • [4] Hilas O. & Ezzo D., Nebivolol (bystolic), a novel beta blocker for hypertension, Pharmacy and Therapeutics, 34(4) (2009) 188-192.
  • [5] Mamaghani M., Nia H. R., Tavakoli F. & Jahanshahi P., Recent Advances in the MCRs Synthesis of Chromenes: A Review, Current Organic Chemistry, 22(17) (2018) 1704 - 1769.
  • [6] Raj V. & Lee J., 2H/4H-Chromenes-a versatile biologically attractive scaffold, Frontiers in Chemistry, 8(623) (2020) 1-23.
  • [7] Bianchi G. & Tava, A., Synthesis of (2R)-(+)-2,3-Dihydro-2,6-dimethyl-4H-pyran-4-one, a Homologue of Pheromones of a Species in the Hepialidae Family, Agricultural and Biological Chemistry, 51 (1987) 2001-2002.
  • [8] Tangmouo J. G., Meli A. L., Komguem J., Kuete V., Ngounou F. N., Lontsi D., Beng V. P., Houdhary M. L. & Sondengam B. L., Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien), Tetrahedron Letter, 47 (2006) 3067-3070.
  • [9] Kitamura R. O. S., Romoff P., Young M. C. M., Kato M. J. & Lago J. H. G., Chromenes from Peperomia serpens (Sw.) Loudon (Piperaceae), Phytochemistry, 67 (2006) 2398-2402.
  • [10] Ellis G. P., The Chemistry of Heterocyclic Compounds. In: Weissberger, A. & Taylor, E. C. (Eds). Chromenes. Chromanes and Chromones. 2nd ed. New York and London: John Wiley and Sons. (1977) Chapter 11, 11-139.
  • [11] McCracken S. T., Kaiser M., Boshoff H. I., Boyd P. D. W. & Copp B. R., Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers, Bioorganic & Medicinal Chemistry, 20 (2012) 1482-1493.
  • [12] Mohareb R. M. & Schatz J., Anti-tumor and anti-leishmanial evaluations of 1,3,4-oxadiazine, pyran derivatives derived from cross-coupling reactions of β-bromo-6H-1,3,4-oxadiazine derivatives, Bioorganic & Medicinal Chemistry, 19 (2011) 2707-2713.
  • [13] Press J. B., McNally J. J., Sanfilippo P. J., Addo M. F., Loughney D., Giardino E., Katz L. B., Falotico R. & Haertlein B. J., Novel thieno[2,3-b]- and [3,4-b]pyrans as potassium channel openers, Thiophene systems-XVII, Bioorganic & Medicinal Chemistry, 1 (1993) 423-435.
  • [14] Tummino P. J., Prasad J. V. N. V., Ferguson D., Nouhan C., Graham N., Domagala J. M., Ellsworth E., Gajda C., Hagen S. E., Lunney E. A., Para K. S., Tait B. D., Pavlovsky A., Erickson J. W., Gracheck S., McQuade T.J. & Hupe D.J., Discovery and optimization of nonpeptide HIV-1 protease inhibitors, Bioorganic & Medicinal Chemistry, 4 (1996) 1401-1410.
  • [15] Jayaprakasha G. K., Rao L. J. & Sakariah K. K., Antioxidant activities of flavidin in different in vitro model systems, Bioorganic & Medicinal Chemistry, 12 (2004) 5141-5146.
  • [16] Yusubov M.S. & Zhdankin V. V., Iodine catalysis: A green alternative to transition metals in organic chemistry and technology, Resource-Efficient Technologies, 1 (2015) 49-67.
  • [17] Prajapati D. & Gohain M., Iodine a Simple, Effective and Inexpensive Catalyst for the Synthesis of Substituted Coumarins, Catalysis Letters, 119 (2007) 59-63.
  • [18] Zhang H., Wang H., Jiang Y., Cao F., Gao W., Zhu L., Yang Y., Wang X., Wang Y., Chen J., Feng Y., Deng X., Lu Y., Hu X., Li X., Zhang J., Shi T. & Wang Z., Recent Advances in Iodine-Promoted C−S/N−S Bonds Formation, Chemistry-A European Journal, 26 (2020) 17289-17317.
  • [19] Samanta S. & Mondal S., Iodine-Catalyzed or -Mediated Reactions in Aqueous Medium, Asian Journal of Organic Chemistry, 10 (2021) 2503-2520.
  • [20] Breugst M. & von der Heiden D., Mechanisms in Iodine Catalysis, Chemistry-A European Journal, 24 (2018) 9187-9199.
  • [21] Kasashima Y., Fujimoto H., Mino T., Sakamoto M., Fujita T., An Efficient Synthesis of Five-membered Cyclic Ethers from 1,3-Diols Using Molecular Iodine as a Catalyst, Journal of Oleo Science, 57 (2008) 437-443.
  • [22] Gezegen H., Tutar U., & Ceylan M., Synthesis and antimicrobial activity of racemic 1,5-diols: 2-(1,3-diaryl-3-hydroxypropyl)cyclohexan-1-ol derivatives, Helvetica Chimica Acta, 99 (2016) 608-616.
  • [23] Çelik İ., Akkurt M., Gezegen H., Üremiş M. M. & Duteanu N., 2-[1-(4-Bromophenyl)-3-hydroxy-3-(4-methoxyphenyl)propyl]cyclohexanol, Acta Crystallographica Section E, E69 (2013) o1091-o1092.
  • [24] Jereb M. & Vrazic D., Iodine-catalyzed Transformation of Aryl-substituted Alcohols Under Solvent-free and Highly Concentrated Reaction Conditions, Acta Chimica Slovenica, 64 (2017) 747-762.
  • [25] El-Sayed R., Mohamed K.S. & Fadda A. A., Synthesis and evaluation of some chromene derivatives as antioxidant with surface activity, Afinidad Journal of Chemical Engineering Theoretical and Applied Chemistry, 75 (2018) 581, 66-75.
There are 25 citations in total.

Details

Primary Language English
Subjects Organic Chemical Synthesis
Journal Section Natural Sciences
Authors

Hayreddin Gezegen 0000-0003-3602-7400

Project Number BAP-201194
Publication Date December 28, 2023
Submission Date August 11, 2023
Acceptance Date November 13, 2023
Published in Issue Year 2023

Cite

APA Gezegen, H. (2023). Synthesis and Characterization of Novel 2,4-Diaryloctahydro-2H-Chromene Derivatives with Four Stereocenters. Cumhuriyet Science Journal, 44(4), 678-686. https://doi.org/10.17776/csj.1341173