Research Article
BibTex RIS Cite

Antigenotoxic Properties of Different Plant Oils and the Influence of Olfactory Bias

Year 2024, , 182 - 187, 30.06.2024
https://doi.org/10.17776/csj.1334182

Abstract

In this study, antigenotoxic effects and developmental toxicity of frankincense and blue anemone oils were aimed to be analysed and the olfactory bias was aimed to be checked to see the possibility of an interaction between the olfactory perception and antigenotoxicity of the plant oils. The somatic mutation and recombination test was used to analyze genotoxicity, developmental process of Drosophila melanogaster was screened and the feeding assay was used to perform an olfactory bias test. Genotoxicity test results showed that none of the oils affected the spot frequencies compared to negative control and they caused 73.3 - 100 % inhibitions after the cotreatment with H2O2. None of them caused any significant difference in puparation and eclosion. The frankincense and blue anemone oils were also found antigenotoxic in this study and these effects were independent from the olfactory perception because the rates of feeding were similar to the one observed with negative control.

References

  • [1] Zhou Y., Zhao W., Lai Y., Zhang B., Zhang D., Edible Plant Oil: Global Status, Health Issues, and Perspectives, Front Plant Sci., 11(1) (2020) 1315-1315.
  • [2] Sumara A., Stachniuk A., Montowska M., Kotecka-Majchrzak K., Grywalska E., Mitura P., Saftić Martinović L., Kraljević Pavelić S. and Fornal E., Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions, Food Reviews International, (2022) 1-21.
  • [3] Zhang W., Wang T., Zheng Z., Quirino R. L., Xie F., Li Y. and Zhang C., Plant oil-based non-isocyanate waterborne poly(hydroxyl urethane)s, Chemical Engineering Journal, 452 (2023).
  • [4] Yang J., Liu Y., Zhao L., Chen Y., Sun Z., Zhang Y., Versatility of plant oil as sustainable source for advanced functional materials design, Materials Today Sustainability, 22 (2023).
  • [5] Mikołajczak N., Tańska M., Ogrodowska D., Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability, Trends in Food Science & Technology, 113 (2021) 110-138.
  • [6] Wu F., Mao L., Zhuang P., Chen X., Jiao J. and Zhang Y., Plant-sourced cooking oil consumption is associated with lower total mortality in a longitudinal nationwide cohort study, Clin. Nutr., 39(12) (2020) 3703-3710.
  • [7] Lin L., Allemekinders H., Dansby A., Campbell L., Durance-Tod S., Berger A., Jones P. J., Evidence of health benefits of canola oil, Nutr. Rev., 71 (6) (2013) 370-385.
  • [8] Schwingshackl L., Lampousi A. M., Portillo M. P., Romaguera D., Hoffmann G., Boeing H., Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials, Nutr. Diabetes, 7 (4) (2017) e262.
  • [9] Comba A., Maestri D. M., Berra M. A., Garcia C. P., Das U. N., Eynard A. R., Pasqualini M. E., Effect of omega-3 and omega-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model, Lipids Health Dis., 9 (2010) 112.
  • [10] Sankar D., Rao M. R., Sambandam G., Pugalendi K. V., Effect of sesame oil on diuretics or Beta-blockers in the modulation of blood pressure, anthropometry, lipid profile, and redox status, Yale J. Biol. Med., 79 (1) (2006) 19-26.
  • [11] Piras A., Rosa A., Marongiu B., Porcedda S., Falconieri D., Dessì M. A., Ozcelik B., Koca U., Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide, Industrial Crops and Products, 46 (2013) 317-323.
  • [12] Kazeem M. I., Ogunwande I. A., Role of fixed oil and fats in human physiology and pathophysiology, Recent Progress in Medicinal Plants, 33 (2012) 85-103.
  • [13] Raut J. S., Karuppayil S. M., A status review on the medicinal properties of essential oils, Industrial Crops and Products, 62 (2014) 250-264.
  • [14] Hakkim F. L., Bakshi H. A., Khan S., Nasef M., Farzand R., Sam S., Rashan L., Al-Baloshi M. S., Abdo Hasson S. S. A., Jabri A. A., McCarron P. A., Tambuwala M. M., Frankincense essential oil suppresses melanoma cancer through down regulation of Bcl-2/Bax cascade signaling and ameliorates heptotoxicity via phase I and II drug metabolizing enzymes, Oncotarget, 10 (37) (2019) 3472-3490.
  • [15] Varma K., Haponiuk J. T., Gopi S., Antiinflammatory activity of Boswellia, City, 2021.
  • [16] Rashan L., Efferth T., Bishir M., Bishir M., Essa M. M., Chidambaram S. B., Qoronfleh M. W., Acute, genetic, and target organ toxicity profiling of Frankincense essential oil from Boswellia sacra in zebrafish (Danio rerio), Archives of Clinical Toxicology, 5(1) (2023) 12-21.
  • [17] Sabah J. T., Alhachami F. R., Potential Anti-Cancer Properties of Frankincese (Boswellia Sarca) Chewing Gum and its Role in Reduction of Tobacco Smoking Genotoxicity, Biomedical and Pharmacology Journal, 16(1) (2023) 213-219.
  • [18] Swanepoel B., Venables L., Olaru O. T., Nitulescu G. M., van de Venter M., In Vitro Anti-proliferative Activity and Mechanism of Action of Anemone nemorosa, Int. J. Mol. Sci., 20 (5) (2019).
  • [19] Hao D. C., Gu X., Xiao P., Anemone medicinal plants: ethnopharmacology, phytochemistry and biology, Acta Pharm. Sin. B., 7(2) (2017) 146-158.
  • [20] Lukianchuk A., Khropot O., Konechnyi Y., Konechna R., Novikov V., Wood anemone. Anemone Nemorosa L. Analytical review, ScienceRise: Pharmaceutical Science, 3(7) (2017) 34-38.
  • [21] Han L. T., Fang Y., Li M. M., Yang H. B., Huang F., The Antitumor Effects of Triterpenoid Saponins from the Anemone flaccida and the Underlying Mechanism, Evid Based Complement Alternat Med., 2013 (2013) 517931.
  • [22] Pirvu L., Stefaniu A., Neagu G., Pintilie L., Studies on Anemone nemorosa L. extracts; polyphenols profile, antioxidant activity, and effects on Caco-2 cells by in vitro and in silico studies, Open Chemistry, 20(1) (2022) 299-312.
  • [23] López-Romero D., Izquierdo-Vega J., Morales-González J., Madrigal-Bujaidar E., Chamorro-Cevallos G., Sánchez-Gutiérrez M., Betanzos-Cabrera G., Alvarez-Gonzalez I., Morales-González Á., Madrigal-Santillán E., Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin, Nutrients, 10(12) (2018) 1954.
  • [24] Sinha S., Biswas D., Mukherjee A., Antigenotoxic and antioxidant activities of palmarosa and citronella essential oils, J. Ethnopharmacol, 137(3) (2011) 1521-1527.
  • [25] de Andrade H. H., Reguly M. L., Lehmann M., Wing somatic mutation and recombination test, Methods Mol. Biol., 247 (2004) 389-412.
  • [26] Tolwinski N. S., Introduction: Drosophila-A Model System for Developmental Biology, J. Dev. Biol., 5(3) (2017).
  • [27] Mirzoyan Z., Sollazzo M., Allocca M., Valenza A. M., Grifoni D., Bellosta P., Drosophila melanogaster: A Model Organism to Study Cancer, Front Genet, 10 (2019) 51.
  • [28] Slotnick B., Weiler E. Olfactory Perception. Springer Berlin Heidelberg, City, 2009.
  • [29] Angelucci F. L., Silva V. V., Dal Pizzol C., Spir L. G., Praes C. E. and Maibach H., Physiological effect of olfactory stimuli inhalation in humans: an overview, Int. J. Cosmet Sci., 36(2) (2014) 117-123.
  • [30] Atsumi T., Tonosaki K., Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva, Psychiatry Res., 150(1) (2007) 89-96.
  • [31] Depetris-Chauvin A., Galagovsky D., Chevalier C., Maniere G. and Grosjean Y., Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae, Sci. Rep., 7(1) (2017) 14230.
  • [32] Yakovleva E. U., Naimark E. B., Markov A. V., Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity, Biochemistry (Moscow), 81(12) (2016) 1445-1460.
  • [33] Chung H., Sztal T., Pasricha S., Sridhar M., Batterham P., Daborn P. J., Characterization of Drosophila melanogaster cytochrome P450 genes, Proceedings of the National Academy of Sciences, 106(14) (2009) 5731-5736.
  • [34] Patenkovic A., Stamenkovic-Radak M., Banjanac T., Andjelkovic M., Antimutagenic effect of sage tea in the wing spot test of Drosophila melanogaster, Food Chem Toxicol, 47(1) (2009) 180-183.
  • [35] Graf U., Würgler F. E., Katz A. J., Frei H., Juon H., Hall C. B., Kale P. G., Somatic mutation and recombination test in Drosophila melanogaster, Environmental Mutagenesis, 6 (1984) 153-188.
  • [36] Sarikaya R., Erciyas K., Kara M. I., Sezer U., Erciyas A. F. and Ay S., Evaluation of genotoxic and antigenotoxic effects of boron by the somatic mutation and recombination test (SMART) on Drosophila, Drug Chem Toxicol, 39(4) (2016) 400-406.
  • [37] Abraham S. K., Antigenotoxicity of coffee in the Drosophila assay for somatic mutation and recombination, Mutagenesis, 9(4) (1994) 383-386.
  • [38] Mezzoug N., Abrini J., Serano A. M., Alonso-Moraga A., Idaomar M., Study on antigenotoxic effects of Moroccan medicinal plants and spices using the white/white+ somatic assay in Drosophila, African Journal of Traditional, Complementary and Alternative Medicines, 3(3) (2006).
  • [39] Rand M. D., Montgomery S. L., Prince L., Vorojeikina D., Developmental toxicity assays using the Drosophila model, Current Protocols in Toxicology, 59 (1) (2014).
  • [40] Liu Q. F., Lee J. H., Kim Y.-M., Lee S., Hong Y. K., Hwang S., Oh Y., Lee K., Yun H. S., Lee I.-S., Jeon S., Chin Y.-W., Koo B.-S., Cho K. S., In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease, Biological & Pharmaceutical Bulletin, 38(12) (2015) 1891-1901.
  • [41] Macedo G. E., Gomes K. K., Rodrigues N. R., Martins I. K., Wallau G. D. L., Carvalho N. R. D., Cruz L. C. D., Costa Silva D. G. D., Boligon A. A., Franco J. L., Posser T., Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 198 (2017) 45-57.
  • [42] Riaz B., Zahoor M. K., Zahoor M. A., Majeed H. N., Javed I., Ahmad A., Jabeen F., Zulhussnain M., Sultana K., Toxicity, phytochemical vomposition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster, Evid Based Complement Alternat. Med., 2018 (2018) 2325659.
Year 2024, , 182 - 187, 30.06.2024
https://doi.org/10.17776/csj.1334182

Abstract

References

  • [1] Zhou Y., Zhao W., Lai Y., Zhang B., Zhang D., Edible Plant Oil: Global Status, Health Issues, and Perspectives, Front Plant Sci., 11(1) (2020) 1315-1315.
  • [2] Sumara A., Stachniuk A., Montowska M., Kotecka-Majchrzak K., Grywalska E., Mitura P., Saftić Martinović L., Kraljević Pavelić S. and Fornal E., Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions, Food Reviews International, (2022) 1-21.
  • [3] Zhang W., Wang T., Zheng Z., Quirino R. L., Xie F., Li Y. and Zhang C., Plant oil-based non-isocyanate waterborne poly(hydroxyl urethane)s, Chemical Engineering Journal, 452 (2023).
  • [4] Yang J., Liu Y., Zhao L., Chen Y., Sun Z., Zhang Y., Versatility of plant oil as sustainable source for advanced functional materials design, Materials Today Sustainability, 22 (2023).
  • [5] Mikołajczak N., Tańska M., Ogrodowska D., Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability, Trends in Food Science & Technology, 113 (2021) 110-138.
  • [6] Wu F., Mao L., Zhuang P., Chen X., Jiao J. and Zhang Y., Plant-sourced cooking oil consumption is associated with lower total mortality in a longitudinal nationwide cohort study, Clin. Nutr., 39(12) (2020) 3703-3710.
  • [7] Lin L., Allemekinders H., Dansby A., Campbell L., Durance-Tod S., Berger A., Jones P. J., Evidence of health benefits of canola oil, Nutr. Rev., 71 (6) (2013) 370-385.
  • [8] Schwingshackl L., Lampousi A. M., Portillo M. P., Romaguera D., Hoffmann G., Boeing H., Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials, Nutr. Diabetes, 7 (4) (2017) e262.
  • [9] Comba A., Maestri D. M., Berra M. A., Garcia C. P., Das U. N., Eynard A. R., Pasqualini M. E., Effect of omega-3 and omega-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model, Lipids Health Dis., 9 (2010) 112.
  • [10] Sankar D., Rao M. R., Sambandam G., Pugalendi K. V., Effect of sesame oil on diuretics or Beta-blockers in the modulation of blood pressure, anthropometry, lipid profile, and redox status, Yale J. Biol. Med., 79 (1) (2006) 19-26.
  • [11] Piras A., Rosa A., Marongiu B., Porcedda S., Falconieri D., Dessì M. A., Ozcelik B., Koca U., Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide, Industrial Crops and Products, 46 (2013) 317-323.
  • [12] Kazeem M. I., Ogunwande I. A., Role of fixed oil and fats in human physiology and pathophysiology, Recent Progress in Medicinal Plants, 33 (2012) 85-103.
  • [13] Raut J. S., Karuppayil S. M., A status review on the medicinal properties of essential oils, Industrial Crops and Products, 62 (2014) 250-264.
  • [14] Hakkim F. L., Bakshi H. A., Khan S., Nasef M., Farzand R., Sam S., Rashan L., Al-Baloshi M. S., Abdo Hasson S. S. A., Jabri A. A., McCarron P. A., Tambuwala M. M., Frankincense essential oil suppresses melanoma cancer through down regulation of Bcl-2/Bax cascade signaling and ameliorates heptotoxicity via phase I and II drug metabolizing enzymes, Oncotarget, 10 (37) (2019) 3472-3490.
  • [15] Varma K., Haponiuk J. T., Gopi S., Antiinflammatory activity of Boswellia, City, 2021.
  • [16] Rashan L., Efferth T., Bishir M., Bishir M., Essa M. M., Chidambaram S. B., Qoronfleh M. W., Acute, genetic, and target organ toxicity profiling of Frankincense essential oil from Boswellia sacra in zebrafish (Danio rerio), Archives of Clinical Toxicology, 5(1) (2023) 12-21.
  • [17] Sabah J. T., Alhachami F. R., Potential Anti-Cancer Properties of Frankincese (Boswellia Sarca) Chewing Gum and its Role in Reduction of Tobacco Smoking Genotoxicity, Biomedical and Pharmacology Journal, 16(1) (2023) 213-219.
  • [18] Swanepoel B., Venables L., Olaru O. T., Nitulescu G. M., van de Venter M., In Vitro Anti-proliferative Activity and Mechanism of Action of Anemone nemorosa, Int. J. Mol. Sci., 20 (5) (2019).
  • [19] Hao D. C., Gu X., Xiao P., Anemone medicinal plants: ethnopharmacology, phytochemistry and biology, Acta Pharm. Sin. B., 7(2) (2017) 146-158.
  • [20] Lukianchuk A., Khropot O., Konechnyi Y., Konechna R., Novikov V., Wood anemone. Anemone Nemorosa L. Analytical review, ScienceRise: Pharmaceutical Science, 3(7) (2017) 34-38.
  • [21] Han L. T., Fang Y., Li M. M., Yang H. B., Huang F., The Antitumor Effects of Triterpenoid Saponins from the Anemone flaccida and the Underlying Mechanism, Evid Based Complement Alternat Med., 2013 (2013) 517931.
  • [22] Pirvu L., Stefaniu A., Neagu G., Pintilie L., Studies on Anemone nemorosa L. extracts; polyphenols profile, antioxidant activity, and effects on Caco-2 cells by in vitro and in silico studies, Open Chemistry, 20(1) (2022) 299-312.
  • [23] López-Romero D., Izquierdo-Vega J., Morales-González J., Madrigal-Bujaidar E., Chamorro-Cevallos G., Sánchez-Gutiérrez M., Betanzos-Cabrera G., Alvarez-Gonzalez I., Morales-González Á., Madrigal-Santillán E., Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin, Nutrients, 10(12) (2018) 1954.
  • [24] Sinha S., Biswas D., Mukherjee A., Antigenotoxic and antioxidant activities of palmarosa and citronella essential oils, J. Ethnopharmacol, 137(3) (2011) 1521-1527.
  • [25] de Andrade H. H., Reguly M. L., Lehmann M., Wing somatic mutation and recombination test, Methods Mol. Biol., 247 (2004) 389-412.
  • [26] Tolwinski N. S., Introduction: Drosophila-A Model System for Developmental Biology, J. Dev. Biol., 5(3) (2017).
  • [27] Mirzoyan Z., Sollazzo M., Allocca M., Valenza A. M., Grifoni D., Bellosta P., Drosophila melanogaster: A Model Organism to Study Cancer, Front Genet, 10 (2019) 51.
  • [28] Slotnick B., Weiler E. Olfactory Perception. Springer Berlin Heidelberg, City, 2009.
  • [29] Angelucci F. L., Silva V. V., Dal Pizzol C., Spir L. G., Praes C. E. and Maibach H., Physiological effect of olfactory stimuli inhalation in humans: an overview, Int. J. Cosmet Sci., 36(2) (2014) 117-123.
  • [30] Atsumi T., Tonosaki K., Smelling lavender and rosemary increases free radical scavenging activity and decreases cortisol level in saliva, Psychiatry Res., 150(1) (2007) 89-96.
  • [31] Depetris-Chauvin A., Galagovsky D., Chevalier C., Maniere G. and Grosjean Y., Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae, Sci. Rep., 7(1) (2017) 14230.
  • [32] Yakovleva E. U., Naimark E. B., Markov A. V., Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity, Biochemistry (Moscow), 81(12) (2016) 1445-1460.
  • [33] Chung H., Sztal T., Pasricha S., Sridhar M., Batterham P., Daborn P. J., Characterization of Drosophila melanogaster cytochrome P450 genes, Proceedings of the National Academy of Sciences, 106(14) (2009) 5731-5736.
  • [34] Patenkovic A., Stamenkovic-Radak M., Banjanac T., Andjelkovic M., Antimutagenic effect of sage tea in the wing spot test of Drosophila melanogaster, Food Chem Toxicol, 47(1) (2009) 180-183.
  • [35] Graf U., Würgler F. E., Katz A. J., Frei H., Juon H., Hall C. B., Kale P. G., Somatic mutation and recombination test in Drosophila melanogaster, Environmental Mutagenesis, 6 (1984) 153-188.
  • [36] Sarikaya R., Erciyas K., Kara M. I., Sezer U., Erciyas A. F. and Ay S., Evaluation of genotoxic and antigenotoxic effects of boron by the somatic mutation and recombination test (SMART) on Drosophila, Drug Chem Toxicol, 39(4) (2016) 400-406.
  • [37] Abraham S. K., Antigenotoxicity of coffee in the Drosophila assay for somatic mutation and recombination, Mutagenesis, 9(4) (1994) 383-386.
  • [38] Mezzoug N., Abrini J., Serano A. M., Alonso-Moraga A., Idaomar M., Study on antigenotoxic effects of Moroccan medicinal plants and spices using the white/white+ somatic assay in Drosophila, African Journal of Traditional, Complementary and Alternative Medicines, 3(3) (2006).
  • [39] Rand M. D., Montgomery S. L., Prince L., Vorojeikina D., Developmental toxicity assays using the Drosophila model, Current Protocols in Toxicology, 59 (1) (2014).
  • [40] Liu Q. F., Lee J. H., Kim Y.-M., Lee S., Hong Y. K., Hwang S., Oh Y., Lee K., Yun H. S., Lee I.-S., Jeon S., Chin Y.-W., Koo B.-S., Cho K. S., In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease, Biological & Pharmaceutical Bulletin, 38(12) (2015) 1891-1901.
  • [41] Macedo G. E., Gomes K. K., Rodrigues N. R., Martins I. K., Wallau G. D. L., Carvalho N. R. D., Cruz L. C. D., Costa Silva D. G. D., Boligon A. A., Franco J. L., Posser T., Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 198 (2017) 45-57.
  • [42] Riaz B., Zahoor M. K., Zahoor M. A., Majeed H. N., Javed I., Ahmad A., Jabeen F., Zulhussnain M., Sultana K., Toxicity, phytochemical vomposition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster, Evid Based Complement Alternat. Med., 2018 (2018) 2325659.
There are 42 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Natural Sciences
Authors

Begumhan Yılmaz Kardas 0000-0002-8446-1116

Publication Date June 30, 2024
Submission Date July 28, 2023
Acceptance Date April 19, 2024
Published in Issue Year 2024

Cite

APA Yılmaz Kardas, B. (2024). Antigenotoxic Properties of Different Plant Oils and the Influence of Olfactory Bias. Cumhuriyet Science Journal, 45(2), 182-187. https://doi.org/10.17776/csj.1334182