Research Article
BibTex RIS Cite

Hidroksiklorokin Prostat Kanseri Hücrelerinde m6A RNA Metilasyonunu Düzenler

Year 2023, , 629 - 634, 28.12.2023
https://doi.org/10.17776/csj.1307100

Abstract

N6-metiladenozin (m6A) modifikasyonlarının rolü prostat kanseri araştırmalarında gelişmekte olan bir alandır ve bu modifikasyonlar kanser dâhil çeşitli hücresel süreçlerle ilişkilendirilmiştir. Otofaji inhibitörü olan hidroksiklorokin (HCQ), prostat kanserinde kemoterapiye yanıtı artırmada umut verici sonuçlar göstermiştir. Ancak, m6A modifikasyonları ile HCQ arasındaki ilişki prostat kanserinde henüz net değildir. Bu nedenle, bu çalışmanın amacı HCQ'nun prostat kanseri hücrelerinde m6A metilasyonunun düzenlenmesine olan etkisini incelemektir.
İlk olarak, HCQ'nun LNCaP, PC3 ve PNT1A hücreleri üzerindeki sitotoksik etkisi değerlendirildi. Ardından, her hücre hattı için yarı maksimal inhibisyon konsantrasyonu değerleri hesaplandı. Son olarak, HCQ ile muamele edilen ve edilmeyen hücrelerdeki m6A seviyeleri ticari m6A RNA metilasyon kantifikasyon kiti kullanılarak belirlendi.
HCQ, LNCaP ve PC3 hücrelerinde doza ve zamana bağlı olarak hücre canlılığında belirgin bir azalmaya neden oldu, ancak normal prostat hücreleri olan PNT1A'da toksisiteye yol açmadı. HCQ tedavisi sonrasında hem LNCaP hem de PC3 hücrelerinde m6A seviyesinde istatistiksel olarak anlamlı bir azalma gözlendi.
Bu çalışma, HCQ'nun prostat kanseri hücrelerinde m6A metilasyonunu etkilediğini ilk kez ortaya koymaktadır. Otofaji ile m6A arasındaki etkileşim, gelişmekte olan bir araştırma alanıdır ve otofaji inhibitörü HCQ'nun m6A modifikasyonları üzerindeki etkisi, potansiyel etki mekanizmalarına yeni bir boyut kazandırmaktadır.

References

  • [1] Rawla P., Epidemiology of Prostate Cancer, World J. Oncol.,10(2) (2019) 63–89.
  • [2] Kyprianou N., English H.F., Isaacs J.T., Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation, Cancer Res., 50(12) (1990) 3748–53.
  • [3] Xiang Y., Laurent B., Hsu C.H., Nachtergaele S., Lu Z., Sheng W., Xu C., Chen H., Ouyang J., Wang S., Ling D., Hsu P.H., Zou L., Jambhekar A., He C., Shi Y., Corrigendum: RNA m6A methylation regulates the ultraviolet-induced DNA damage response, Nature, 552(7685) (2017) 430.
  • [4] Aguilo F., Zhang F., Sancho A., Fidalgo M., Cecilia S.D., Vashisht A., Lee D.F., Chen C.H., Rengasamy M., Andino B., Jahouh F., Roman A., Krig S.R., Wang R., Zhang W., Wohlschlegel J.A., Wang J., Walsh M.J., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming, Cell Stem Cell., 17(6) (2015) 689–704.
  • [5] [5] Lin Z., Hsu P.J., Xing X., Fang J., Lu Z., Zou Q., Zhang K.J., Zhang X., Zhou Y., Zhang T., Zhang Y., Song W., Jia G., Yang X., He C., Tong M.H., Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis, Cell Res., 27(10) (2017) 1216–30.
  • [6] Luo J., Liu H., Luan S., He C., Li Z., Aberrant Regulation of mRNA m6A Modification in Cancer Development, Int. J. Mol. Sci., 19(9) (2018) 2515.
  • [7] Fitzsimmons C.M., Batista P.J., It’s complicated… m6A-dependent regulation of gene expression in cancer, Biochimica Et Biophysica Acta Bba - Gene Regul Mech., 1862(3)( 2019) 382–93.
  • [8] Ma J., Yang F., Zhou C., Liu F., Yuan J., Wang F., Wang T., Xu Q., Zhou W., Sun S., METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary MicroRNA processing, Hepatology., 65(2) (2017) 529–43.
  • [9] Cui Q., Shi H., Ye P., Li L., Qu Q., Sun G., Sun G., Lu Z., Huang Y., Yang C.G., Riggs A.D., He C., Shi Y., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells, Cell Reports, 18(11) (2017) 2622–34.
  • [10] Li Z., Weng H., Su R., Weng X., Zuo Z., Li C., Huang H., Nachtergaele S., Dong L., Hu C., Qin X., Tang L., Wang Y., Hong G.M., Huang H., Wang X., Chen P., Gurbuxani S., Arnovitz S., Li Y., Li S., Strong J., Neilly M.B., Larson R.A., Jiang X., Zhang P., Jin J., He C., Chen J., FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6-Methyladenosine RNA Demethylase, Cancer Cell, 31(1) (2017) 127–41.
  • [11] Li J., Xie H., Ying Y., Chen H., Yan H., He L., Xu M., Xu X., Liang Z., Liu B., Wang X., Zheng X., Xie L., YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer, Mol. Cancer, 19(1) (2020) 152.
  • [12] Chen Y., Pan C., Wang X., Xu D., Ma Y., Hu J., Chen P., Xiang Z., Rao Q., Han X., Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells, Theranostics, 11(16) (2021) 7640–57.
  • [13] Cotter K.A., Gallon J., Uebersax N., Rubin P., Meyer K.D., Piscuoglio S., Jaffrey S.R., Rubin M.A., Mapping of m6A and Its Regulatory Targets in Prostate Cancer Reveals a METTL3-Low Induction of Therapy Resistance, Mol Cancer Res., 19(8) (2021) 1398–411.
  • [14] Zhang F., Chen F., Wang C., Zhou F., The functional roles of m6A modification in prostate cancer, Proteom Clin Appl., (2023) e2200108.
  • [15] Farrow J.M., Yang J.C., Evans C.P., Autophagy as a modulator and target in prostate cancer, Nat. Rev. Urol., 11(9) (2014) 508–16.
  • [16] Sotelo J., Briceño E., López-González M.A., Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial, Ann Intern Med., 144(5) (2006) 337–43.
  • [17] Ben-Zvi I., Kivity S., Langevitz P., Shoenfeld Y., Hydroxychloroquine: From Malaria to Autoimmunity, Clin. Rev. Allerg. Immu., 42(2) (2012) 145–53.
  • [18] Carew J.S., Kelly K.R., Nawrocki S.T., Autophagy as a target for cancer therapy: new developments, Cancer Management Res, 4 (2012) 357–65.
  • [19] Levy J.M.M., Thompson J.C., Griesinger A.M., Amani V., Donson A.M., Birks D.K., Morgan M.J., Mirsky D.M., Handler M.H., Foreman N.K., Thorburn A., Autophagy Inhibition Improves Chemosensitivity in BRAFV600E Brain Tumors, Cancer Discov, 4(7) (2014) 773–80.
  • [20] Saleem A., Dvorzhinski D., Santanam U., Mathew R., Bray K., Stein M., White E., DiPaola R.S., Effect of dual inhibition of apoptosis and autophagy in prostate cancer, Prostate, 72(12) (2012) 1374–81.
  • [21] Ling S.T., Deng C.L., Huang L., Yao Q.S., Liu C., Sun C.T., Wang L., Yang Y., Gong X.X., Chen C.B., Hydroxychloroquine Blocks Autophagy and Promotes Apoptosis of the Prostate after Castration in Rats, Urol Int., 104(11–12) (2019) 968–74.
  • [22] Rosenfeld M.R., Ye X., Supko J.G., Desideri S., Grossman S.A., Brem S., Mikkelson T., Wang D., Chang Y.C., Hu J., McAfee Q., Fisher J., Troxel A.B., Piao S., Heitjan D.F., Tan K.S., Pontiggia L., O’Dwyer P.J., Davis L.E., Amaravadi R.K., A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme, Autophagy, 10(8) (2014) 1359–68.
  • [23] Rangwala R., Leone R., Chang Y.C., Fecher L.A., Schuchter L.M., Kramer A., Tan K.S., Heitjan D.F., Rodgers G., Gallagher M., Piao S., Troxel A.B., Evans T.L., DeMichele A.M., Nathanson K.L., O’Dwyer P.J., Kaiser J., Pontiggia L., Davis L.E., Amaravadi R.K., Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma, Autophagy, 10(8) (2014) 1369–79.
  • [24] Vogl D.T., Stadtmauer E.A., Tan K.S., Heitjan D.F., Davis L.E., Pontiggia L., Rangwala R., Piao S., Chang Y.C., Scott E.C., Paul T.M., Nichols C.W., Porter D.L., Kaplan J., Mallon G., Bradner J.E., Amaravadi R.K., Combined autophagy and proteasome inhibition, Autophagy, 10(8) (2014) 1380–90.
  • [25] Mahalingam D., Mita M., Sarantopoulos J., Wood L., Amaravadi R.K., Davis L.E., Mita A.C., Curiel T.J., Espitia C.M., Nawrocki S.T., Giles F.J., Carew J.S., Combined autophagy and HDAC inhibition, Autophagy, 10(8) (2014) 1403–14.
  • [26] Tuma R.S., Beaudet M.P., Jin X., Jones L.J., Cheung C.Y., Yue S., Singer V.L., Characterization of SYBR Gold Nucleic Acid Gel Stain: A Dye Optimized for Use with 300-nm Ultraviolet Transilluminators, Anal Biochem., 268(2) (1999) 278–88.
  • [27] Horoszewicz J.S., Leong S.S., Kawinski E., Karr J.P., Rosenthal H., Chu T.M., Mirand E.A., Murphy G.P., LNCaP model of human prostatic carcinoma, Cancer Res., 43(4) (1983)1 809–18.
  • [28] Bokhoven A.V., Varella‐Garcia M., Korch C., Johannes W.U., Smith E.E., Miller H.L., Nordeen S.K., Miller G.J., Lucia M.S., Molecular characterization of human prostate carcinoma cell lines, Prostate, 57(3)(2003)205–25.
  • [29] Solomon V.R., Lee H., Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies, Eur. J. Pharmacol., 625(1–3) (2009) 220–33.
  • [30] Kumano M., Furukawa J., Shiota M., Zardan A., Zhang F., Beraldi E., Wiedmann R.M., Fazli L., Zoubeidi A., Gleave M.E., Cotargeting Stress-Activated Hsp27 and Autophagy as a Combinatorial Strategy to Amplify Endoplasmic Reticular Stress in Prostate Cancer, Mol. Cancer Ther., 11(8) (2012) 1661–71.
  • [31] Eide T., Ramberg H., Glackin C., Tindall D., Taskén K.A., TWIST1, A novel androgen-regulated gene, is a target for NKX3-1 in prostate cancer cells, Cancer Cell Int., 13(1) (2013) 4–4.
  • [32] Liang J., Sun J., Zhang W., Wang X., Xu Y., Peng Y., Zhang L., Xiong W., Liu Y., Liu H., Novel Insights into The Roles of N6-methyladenosine (m6A) Modification and Autophagy in Human Diseases, Int. J. Biol. Sci., 19(2) (2023) 705–20.
  • [33] Jo H., Shim K., Jeoung D., Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance, Int. J. Mol. Sci., 24(4) (2023) 4225.
  • [34] Lin Z., Niu Y., Wan A., Chen D., Liang H., Chen X., Sun L., Zhan S., Chen L., Cheng C., Zhang X., Bu X., He W., Wan G., RNA m6 A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy, Embo J., 39(12) (2019) e103181.
  • [35] Liu S., Li Q., Li G., Zhang Q., Zhuo L., Han X., Zhang M., Chen X., Pan T., Yan L., Jin T., Wang J., Lv Q., Sui X., Xie T., The mechanism of m6A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene, Cell Death Dis., 11(11) (2020)
  • [36] Wang X., Wu R., Liu Y., Zhao Y., Bi Z., Yao Y., Liu Q., Shi H., Wang F., Wang Y., m 6 A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy., 16(7) (2019) 1221–35.
  • [37] Xu Y., Zhou J., Li L., Yang W., Zhang Z., Zhang K., Ma K., Xie H., Zhang Z., Cai L., Gong Y., Gong K., FTO-mediated autophagy promotes progression of clear cell renal cell carcinoma via regulating SIK2 mRNA stability, Int. J. Biol. Sci., 18(15) (2022) 5943–62.
  • [38] Jin S., Zhang X., Miao Y., Liang P., Zhu K., She Y., Wu Y., Liu D.A., Huang J., Ren J., Cui J., m6A RNA modification controls autophagy through upregulating ULK1 protein abundance, Cell Res., 28(9) (2018) 955–7.
  • [39] Zhang Y., Gao L., Wang W., Zhang T., Dong F., Ding W., M6A demethylase fat mass and obesity‐associated protein regulates cisplatin resistance of gastric cancer by modulating autophagy activation through ULK1, Cancer Sci., 113(9) (2022) 3085–96.

Hydroxychloroquine Modulates m6A RNA Methylation in Prostate Cancer Cells

Year 2023, , 629 - 634, 28.12.2023
https://doi.org/10.17776/csj.1307100

Abstract

Prostate cancer ranks as the second most prevalent cancer in men globally. One of the evolving subjects of investigation in prostate cancer is the role of N6-methyladenosine (m6A) modifications. Hydroxychloroquine (HCQ), an autophagy inhibitor, was shown to be promising in enhancing the response to chemotherapy in prostate cancer. The interplay between autophagy and m6A is an emerging area of research. However, the relationship between m6A modifications and HCQ remains unclear. The objective of this study was to examine the effect of HCQ on the regulation of m6A methylation in prostate cancer. Initially, the cytotoxic effect of HCQ on LNCaP and PC3 cells was evaluated. The IC50 values for each cell were calculated. Finally, m6A levels in HCQ-treated and untreated cells were determined using m6A RNA methylation quantification kit. HCQ showed a significant dose- and time-dependent reduction in cell viability. Following HCQ treatment, a statistically significant decrease in m6A levels was observed: from 0.050±0.001% to 0.013±0.02% in PC3 cells and from 0.039±0.001% to 0.016±0.01% in LNCaP cells. The study unveils for the first time that HCQ affects m6A methylation in prostate cancer. The impact of autophagy inhibitor HCQ on m6A modifications introduces a novel dimension to its potential mechanisms of action.

References

  • [1] Rawla P., Epidemiology of Prostate Cancer, World J. Oncol.,10(2) (2019) 63–89.
  • [2] Kyprianou N., English H.F., Isaacs J.T., Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation, Cancer Res., 50(12) (1990) 3748–53.
  • [3] Xiang Y., Laurent B., Hsu C.H., Nachtergaele S., Lu Z., Sheng W., Xu C., Chen H., Ouyang J., Wang S., Ling D., Hsu P.H., Zou L., Jambhekar A., He C., Shi Y., Corrigendum: RNA m6A methylation regulates the ultraviolet-induced DNA damage response, Nature, 552(7685) (2017) 430.
  • [4] Aguilo F., Zhang F., Sancho A., Fidalgo M., Cecilia S.D., Vashisht A., Lee D.F., Chen C.H., Rengasamy M., Andino B., Jahouh F., Roman A., Krig S.R., Wang R., Zhang W., Wohlschlegel J.A., Wang J., Walsh M.J., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming, Cell Stem Cell., 17(6) (2015) 689–704.
  • [5] [5] Lin Z., Hsu P.J., Xing X., Fang J., Lu Z., Zou Q., Zhang K.J., Zhang X., Zhou Y., Zhang T., Zhang Y., Song W., Jia G., Yang X., He C., Tong M.H., Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis, Cell Res., 27(10) (2017) 1216–30.
  • [6] Luo J., Liu H., Luan S., He C., Li Z., Aberrant Regulation of mRNA m6A Modification in Cancer Development, Int. J. Mol. Sci., 19(9) (2018) 2515.
  • [7] Fitzsimmons C.M., Batista P.J., It’s complicated… m6A-dependent regulation of gene expression in cancer, Biochimica Et Biophysica Acta Bba - Gene Regul Mech., 1862(3)( 2019) 382–93.
  • [8] Ma J., Yang F., Zhou C., Liu F., Yuan J., Wang F., Wang T., Xu Q., Zhou W., Sun S., METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary MicroRNA processing, Hepatology., 65(2) (2017) 529–43.
  • [9] Cui Q., Shi H., Ye P., Li L., Qu Q., Sun G., Sun G., Lu Z., Huang Y., Yang C.G., Riggs A.D., He C., Shi Y., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells, Cell Reports, 18(11) (2017) 2622–34.
  • [10] Li Z., Weng H., Su R., Weng X., Zuo Z., Li C., Huang H., Nachtergaele S., Dong L., Hu C., Qin X., Tang L., Wang Y., Hong G.M., Huang H., Wang X., Chen P., Gurbuxani S., Arnovitz S., Li Y., Li S., Strong J., Neilly M.B., Larson R.A., Jiang X., Zhang P., Jin J., He C., Chen J., FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6-Methyladenosine RNA Demethylase, Cancer Cell, 31(1) (2017) 127–41.
  • [11] Li J., Xie H., Ying Y., Chen H., Yan H., He L., Xu M., Xu X., Liang Z., Liu B., Wang X., Zheng X., Xie L., YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer, Mol. Cancer, 19(1) (2020) 152.
  • [12] Chen Y., Pan C., Wang X., Xu D., Ma Y., Hu J., Chen P., Xiang Z., Rao Q., Han X., Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells, Theranostics, 11(16) (2021) 7640–57.
  • [13] Cotter K.A., Gallon J., Uebersax N., Rubin P., Meyer K.D., Piscuoglio S., Jaffrey S.R., Rubin M.A., Mapping of m6A and Its Regulatory Targets in Prostate Cancer Reveals a METTL3-Low Induction of Therapy Resistance, Mol Cancer Res., 19(8) (2021) 1398–411.
  • [14] Zhang F., Chen F., Wang C., Zhou F., The functional roles of m6A modification in prostate cancer, Proteom Clin Appl., (2023) e2200108.
  • [15] Farrow J.M., Yang J.C., Evans C.P., Autophagy as a modulator and target in prostate cancer, Nat. Rev. Urol., 11(9) (2014) 508–16.
  • [16] Sotelo J., Briceño E., López-González M.A., Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial, Ann Intern Med., 144(5) (2006) 337–43.
  • [17] Ben-Zvi I., Kivity S., Langevitz P., Shoenfeld Y., Hydroxychloroquine: From Malaria to Autoimmunity, Clin. Rev. Allerg. Immu., 42(2) (2012) 145–53.
  • [18] Carew J.S., Kelly K.R., Nawrocki S.T., Autophagy as a target for cancer therapy: new developments, Cancer Management Res, 4 (2012) 357–65.
  • [19] Levy J.M.M., Thompson J.C., Griesinger A.M., Amani V., Donson A.M., Birks D.K., Morgan M.J., Mirsky D.M., Handler M.H., Foreman N.K., Thorburn A., Autophagy Inhibition Improves Chemosensitivity in BRAFV600E Brain Tumors, Cancer Discov, 4(7) (2014) 773–80.
  • [20] Saleem A., Dvorzhinski D., Santanam U., Mathew R., Bray K., Stein M., White E., DiPaola R.S., Effect of dual inhibition of apoptosis and autophagy in prostate cancer, Prostate, 72(12) (2012) 1374–81.
  • [21] Ling S.T., Deng C.L., Huang L., Yao Q.S., Liu C., Sun C.T., Wang L., Yang Y., Gong X.X., Chen C.B., Hydroxychloroquine Blocks Autophagy and Promotes Apoptosis of the Prostate after Castration in Rats, Urol Int., 104(11–12) (2019) 968–74.
  • [22] Rosenfeld M.R., Ye X., Supko J.G., Desideri S., Grossman S.A., Brem S., Mikkelson T., Wang D., Chang Y.C., Hu J., McAfee Q., Fisher J., Troxel A.B., Piao S., Heitjan D.F., Tan K.S., Pontiggia L., O’Dwyer P.J., Davis L.E., Amaravadi R.K., A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme, Autophagy, 10(8) (2014) 1359–68.
  • [23] Rangwala R., Leone R., Chang Y.C., Fecher L.A., Schuchter L.M., Kramer A., Tan K.S., Heitjan D.F., Rodgers G., Gallagher M., Piao S., Troxel A.B., Evans T.L., DeMichele A.M., Nathanson K.L., O’Dwyer P.J., Kaiser J., Pontiggia L., Davis L.E., Amaravadi R.K., Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma, Autophagy, 10(8) (2014) 1369–79.
  • [24] Vogl D.T., Stadtmauer E.A., Tan K.S., Heitjan D.F., Davis L.E., Pontiggia L., Rangwala R., Piao S., Chang Y.C., Scott E.C., Paul T.M., Nichols C.W., Porter D.L., Kaplan J., Mallon G., Bradner J.E., Amaravadi R.K., Combined autophagy and proteasome inhibition, Autophagy, 10(8) (2014) 1380–90.
  • [25] Mahalingam D., Mita M., Sarantopoulos J., Wood L., Amaravadi R.K., Davis L.E., Mita A.C., Curiel T.J., Espitia C.M., Nawrocki S.T., Giles F.J., Carew J.S., Combined autophagy and HDAC inhibition, Autophagy, 10(8) (2014) 1403–14.
  • [26] Tuma R.S., Beaudet M.P., Jin X., Jones L.J., Cheung C.Y., Yue S., Singer V.L., Characterization of SYBR Gold Nucleic Acid Gel Stain: A Dye Optimized for Use with 300-nm Ultraviolet Transilluminators, Anal Biochem., 268(2) (1999) 278–88.
  • [27] Horoszewicz J.S., Leong S.S., Kawinski E., Karr J.P., Rosenthal H., Chu T.M., Mirand E.A., Murphy G.P., LNCaP model of human prostatic carcinoma, Cancer Res., 43(4) (1983)1 809–18.
  • [28] Bokhoven A.V., Varella‐Garcia M., Korch C., Johannes W.U., Smith E.E., Miller H.L., Nordeen S.K., Miller G.J., Lucia M.S., Molecular characterization of human prostate carcinoma cell lines, Prostate, 57(3)(2003)205–25.
  • [29] Solomon V.R., Lee H., Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies, Eur. J. Pharmacol., 625(1–3) (2009) 220–33.
  • [30] Kumano M., Furukawa J., Shiota M., Zardan A., Zhang F., Beraldi E., Wiedmann R.M., Fazli L., Zoubeidi A., Gleave M.E., Cotargeting Stress-Activated Hsp27 and Autophagy as a Combinatorial Strategy to Amplify Endoplasmic Reticular Stress in Prostate Cancer, Mol. Cancer Ther., 11(8) (2012) 1661–71.
  • [31] Eide T., Ramberg H., Glackin C., Tindall D., Taskén K.A., TWIST1, A novel androgen-regulated gene, is a target for NKX3-1 in prostate cancer cells, Cancer Cell Int., 13(1) (2013) 4–4.
  • [32] Liang J., Sun J., Zhang W., Wang X., Xu Y., Peng Y., Zhang L., Xiong W., Liu Y., Liu H., Novel Insights into The Roles of N6-methyladenosine (m6A) Modification and Autophagy in Human Diseases, Int. J. Biol. Sci., 19(2) (2023) 705–20.
  • [33] Jo H., Shim K., Jeoung D., Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance, Int. J. Mol. Sci., 24(4) (2023) 4225.
  • [34] Lin Z., Niu Y., Wan A., Chen D., Liang H., Chen X., Sun L., Zhan S., Chen L., Cheng C., Zhang X., Bu X., He W., Wan G., RNA m6 A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy, Embo J., 39(12) (2019) e103181.
  • [35] Liu S., Li Q., Li G., Zhang Q., Zhuo L., Han X., Zhang M., Chen X., Pan T., Yan L., Jin T., Wang J., Lv Q., Sui X., Xie T., The mechanism of m6A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene, Cell Death Dis., 11(11) (2020)
  • [36] Wang X., Wu R., Liu Y., Zhao Y., Bi Z., Yao Y., Liu Q., Shi H., Wang F., Wang Y., m 6 A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy., 16(7) (2019) 1221–35.
  • [37] Xu Y., Zhou J., Li L., Yang W., Zhang Z., Zhang K., Ma K., Xie H., Zhang Z., Cai L., Gong Y., Gong K., FTO-mediated autophagy promotes progression of clear cell renal cell carcinoma via regulating SIK2 mRNA stability, Int. J. Biol. Sci., 18(15) (2022) 5943–62.
  • [38] Jin S., Zhang X., Miao Y., Liang P., Zhu K., She Y., Wu Y., Liu D.A., Huang J., Ren J., Cui J., m6A RNA modification controls autophagy through upregulating ULK1 protein abundance, Cell Res., 28(9) (2018) 955–7.
  • [39] Zhang Y., Gao L., Wang W., Zhang T., Dong F., Ding W., M6A demethylase fat mass and obesity‐associated protein regulates cisplatin resistance of gastric cancer by modulating autophagy activation through ULK1, Cancer Sci., 113(9) (2022) 3085–96.
There are 39 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Sevinc Yanar 0000-0002-6438-7385

Merve Gülsen Bal Albayrak 0000-0003-2444-4258

Publication Date December 28, 2023
Submission Date May 30, 2023
Acceptance Date November 21, 2023
Published in Issue Year 2023

Cite

APA Yanar, S., & Bal Albayrak, M. G. (2023). Hydroxychloroquine Modulates m6A RNA Methylation in Prostate Cancer Cells. Cumhuriyet Science Journal, 44(4), 629-634. https://doi.org/10.17776/csj.1307100