Research Article
BibTex RIS Cite

Cross-Section Calculations of Medical Radioisotope 64Cu via some Proton, Neutron and Deuteron Reactions

Year 2023, , 583 - 589, 29.09.2023
https://doi.org/10.17776/csj.1290957

Abstract

The Copper-64 radioisotope, whose academic research continues on diagnostic and therapeutic use, was examined in this study. 64Cu radioisotope is unique among other Cu isotopes for medical usage due to its low positron energy, appropriate half-life, and short tissue penetration. In cases where experimental data are missing, cross-section calculations can be used, and the existence of the cross-section data may provide various advantages in managing time, cost, and efficiency. In this context, investigated detailed cross-section calculations of the 64Cu isotope. To this end, cross-sections acquired from various calculation codes were compared with the literature, and alternative production routes were investigated. Using the nuclear reaction codes TALYS and EMPIRE, cross-section data of the 64Cu isotope were obtained from the 64Ni(p,n)64Cu, 65Cu(p,n+p)64Cu, 68Zn(p,n+α)64Cu, 65Cu(n,2n)64Cu, 64Ni(d,2n)64Cu, and 63Cu(d,p)64Cu reactions with the equilibrium and pre-equilibrium models. The results were compared with the available literature data from the EXFOR database.

References

  • [1] IAEA (International Atomic Energy Agency), IAEA Radioisotopes and Radiopharmaceuticals Reports No. 1; Cyclotron Produced Radionuclides: Emerging Positron Emitters for Medical Applications: 64Cu and 124I, https:// https://www.iaea.org/publications/10791/cyclotron-produced-radionuclides-emerging-positron-emitters-for-medical-applications-64cu-and-124i Retrieved April 4, 2022.
  • [2] IAEA (International Atomic Energy Agency), Cyclotron Produced Radionuclides: Principles and Practice, Technical Reports Series No. 465, https://www-pub.iaea.org/MTCD/publications/PDF/trs465_web.pdf. Retrieved March 21, 2022.
  • [3] Gutfilen B., Souza S. A., Valentini G., Copper-64: A Real Theranostic Agent, Drug Des. Devel. Ther., 12 (2018) 3235–3245.
  • [4] Boschi A., Martini P., Janevik-Ivanovska E., Duatti A., The Emerging Role of Copper-64 Radiopharmaceuticals as Cancer Theranostics, Drug Disc. Today, 23(8) (2018) 1489–1501.
  • [5] Capriotti G., Piccardo A., Giovannelli E., Signore A., Targeting Copper in Cancer Imaging and Therapy: A New Theragnostic Agent, J Clin Med, 12(1) (2022) 223.
  • [6] Peng F., Recent Advances in Cancer Imaging with 64CuCl2 PET/CT, Nucl Med Mol Imaging, 56(2) (2022) 80-85.
  • [7] Jalilian AR., Osso JA Jr., Vera-Araujo J., et al., IAEA Contribution to the Development of 64Cu Radiopharmaceuticals for Theranostic Applications, Q. J. Nucl. Med. Mol. Imaging, 64(4) (2020) 338-345.
  • [8] Follacchio GA., De Feo MS., De Vincentis G., Monteleone F., Liberatore M., Radiopharmaceuticals Labelled with Copper Radionuclides: Clinical Results in Human Beings, Curr. Radiopharm., 11(1) (2018) 22-33.
  • [9] Ahmedova A., Todorov B., Burdzhiev N., Goze C., Copper Radiopharmaceuticals for Theranostic Applications, Eur. J. Med. Chem., 157 (2018) 1406-1425.
  • [10] Kaplan A., Şekerci M., Çapalı V., Photon Induced Reaction Cross-Section Calculations of Several Structural Fusion Materials, J Fusion Energ, 36 (2017) 213–217.
  • [11] Ozdogan H., ŞEKERCİ M., KAPLAN A, A new developed semi-empirical formula for the (alpha, p) reaction cross-section at 19 +/- 1 MeV, Modern Physics Letters A, 34 (2019) 6.
  • [12] Şekerci, M. Effects of theoretical models on the production cross-section calculations of some non-standard positron emitters., Eur. Phys. J. Plus 136 (2021) 1021.
  • [13] Krane, K.S., Nükleer Fizik ll, Çev. Sarer B., Palme Yayıncılık, 479s (2001) Ankara.
  • [14] Özdoğan H., Şekerci M., Kaplan A., An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of 50,52,53,54Cr(α,x) Reactions, Phys. At. Nucl., 83 (6) (2020) 820-827.
  • [15] Şekerci M., Özdoğan H., Kaplan A., An Investigation of Effects of Level Density Models and Gamma Ray Strength Functions on Cross-Section Calculations for the Production of 90Y, 153Sm, 169Er, 177Lu and 186Re Therapeutic Radioisotopes via (n,g) Reactions, Radiochim. Acta, 108 (1) (2020) 11-17.
  • [16] Şekerci M., Theoretical Cross-Section Calculations for the (α,n) and (α,2n) Reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes, Mosc. Univ. Phys. Bull., 75 (2) (2020) 123-132.
  • [17] Koning A., Hilaire S., Goriely S., TALYS–1.95 A Nuclear Reaction Program, User Manual. 1st ed. NRG, The Netherlands (2019).
  • [18] Herman M., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation, Nuclear Data Sheets, 108(12) (2007) 2655-2715.
  • [19] Zerkin V.V., Pritychenko B., The experimental nuclear reaction data (EXFOR): Extended Computer Database and Web Retrieval System, Nucl. Instrum. Methods. Phys. Res. A, 888 (2018) 31–43.
  • [20] Kurenkov, N.V., Lunev, V.P., Shubin, Y.N., Evaluation of Calculation Methods for Excitation Functions for Production of Radioisotopes of Iodine, Thallium and Other Elements, Applied Radiation and Isotopes, 50(3) (1999) 541-549.
  • [21] Gülümser T., Kaplan A., A Theoretical Study on the Production Cross–Section Calculations for 24Na Medical Isotope, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14 (2) (2021) 802-813.
  • [22] Şekerci M., An Investigation of the Effects of Level Density Models and Alpha Optical Model Potentials on the Cross-Section Calculations for the Production of the Radionuclides 62Cu, 67Ga, 86Y, and 89Zr via Some Alpha Induced Reactions, Radiochim. Acta, 108 (6) (2019) 459-467.
  • [23] Şekerci M., Özdoğan H., Kaplan A., Investigation on the Different Production Routes of 67Ga Radioisotope by Using Different Level Density Models, Mosc. Univ. Phys. Bull., 74 (2019) 277-281.
  • [24] Şekerci M., Özdoğan H., Kaplan A., Level Density Model Effects on the Production Cross-Section Calculations of Some Medical Isotopes via (α,xn) Reactions where x=1–3, Mod. Phys. Lett. A., 35 (2020) 24.
  • [25] Özdoğan H., Şekerci̇ M., Kaplan A., Photo-Neutron Cross-Section Calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with Newly Obtained Giant Dipole Resonance Parameters, Appl. Radiat. Isot., 165 (2020).
  • [26] Özdoğan H., Estimation of (n,p) Reaction Cross Sections at 14.5±0.5 MeV Neutron Energy by Using Artificial Neural Network, Appl. Radiat. Isot., (2021) 170.
  • [27] Kaplan A., Özdoğan H., Aydın A., Tel E., (,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials, Journal Fusion Energy, 32 (2013) 431–436.
  • [28] Kaplan A., Özdoğan H., Aydın A., Tel E., Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials, Journal of Fusion Energy, 32 (2013) 97–102.
  • [29] Kaplan A., Tel E., Aydın A., The Equilibrium and Pre-equilibrium Neutron-Emission Spectra of Some Structural Fusion Materials for (n,xn) Reactions up to 16 MeV Energy, Physics of Atomic Nuclei, 72 (6) (2009) 903–910.
  • [30] Özdoğan H., Şekerci̇ M., Kaplan A., Investigation of Gamma Strength Functions and Level Density Models Effects on Photon Induced Reaction Cross–Section Calculations for the Fusion Structural Materials 46,50Ti, 51V, 58Ni and 63Cu, Applied Radiation and Isotopes, 143 (2019) 6-10.
  • [31] Carlson, B. V., 2001. A Brief Overview of Models of Nucleon-Induced Reactions, Workshop on Nuclear Data for Science & Technology: Accelerator Driven Waste Incineration, The Abdus Salam International Centre for Theoretical Physics, 10-21 September 2001, Miramare - Trieste, Italy, 185-239. Erişim Tarihi: 21.09.2021. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/071/38071998.pdf
  • [32] Griffin, J. J., 1966. Statistical model of intermediate structure, Physical Review Letters, 17, 478-481.
  • [33] Hauser, W., Feshbach, H., The Inelastic Scattering of Neutrons, Physical Review, 87(2) (1952) 366-373.
  • [34] Hodgson, P. E., Pre-Equilibrium Processes in Nuclear Reactions, Nature 292 (1981) 671-672.
  • [35] Rebeles, R. A., Van den Winkel, Hermanne, A. and Tárkányi, F., New measurement and evaluation of the excitation function of 64Ni(p,n) reaction for the production of 64Cu, Nuclear Instruments and Methods in Physics Research, 267 (2009) 457-461.
  • [36] Avila-Rodriguez, M.A., Nye, J.A., Nickles, R.J., Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei Applied Radiation and Isotopes., 65 (2007) 1115–1120.
  • [37] Tanaka, S., Furukawa, M., & Chiba, M., Nuclear reactions of nickel with protons up to 56 MeV, Journal of Inorganic and Nuclear Chemistry, 34 (1972) 2419-2426.
  • [38] Guzhovskii, B.Y., Borkin, I.M., Zvenigorodskii, A.G., Rudnev, V.S., Solodovnikov, A.P., Trusillo, S., Isospin mixing of isobar analog resonances observed for the 59,61,63,65Cu nuclei. Izvestiya Rossiiskoi Akademii Nauk., 33 (1969).
  • [39] Brinkman, G.A., Helmer, J., Lindner, L., Rhys.Rev.Lett., 28 (1977) 9.
  • [40] Hilgers, K., Stoll, T., Skakun, Y., Coenen, H., Qaim, S. M., Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,α+n)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process., Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine, 59(5-6) (2003) 343–351.
  • [41] Mannhart, W., Schmidt, D., Measurement of Neutron Activation Cross Sections in the Energy Range from 8 MeV to 15 MeV, Physikalisch-Technische Bundesanstalt Neutronenphysik Reports, 53 (2007).
  • [42] Paulsen, A., Liskien, H., Cross Sections For The Reactions Mn55(n,2n), Co59(n,2n) Mg24(n,p) and Al27(n,α) in the 12.6-19.6 MeV Energy Region, Journal of Nuclear Energy. Parts A/B. Reactor Science and Technology, 19 (1965) 907.
  • [43] Daraban, L., Adam Rebeles, R., Hermanne, A., Tarkanyi, F., Takacs, S., Study of the excitation functions for 43K, 43,44,44mSc and 44Ti by proton irradiation on 45Sc up to 37MeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(5) (2009) 755–759.
  • [44] Hermanne, A., Tarkanyi, F., Takacs, S., Kovalev and F., Ignatyuk, Activation Cross Sections of the 64Ni(d,2n)Reaction for the Production of the Medical Radionuclide 64Cu, Nucl. Instr. Meth. In Physics B.,258 (2007).
  • [45] Weissman, L., Kreisel, A., Hirsh, T., Aviv, O., Berkovits, D., Girshevitz, O., Eisen, Y., Accurate measurements of the 63Cu(d,p)64Cu and natCu(d,x)65Zn cross-sections in the 2.77–5.62 MeV energy range., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 342 (2015) 7–12.
  • [46] Bém, P., Šimečková, E., Honusek, M., Fischer, U., Simakov, S.P., Forrest, R.A., Avrigeanu, M., Obreja, A., Román, F.L., Avrigeanu, V., Low and medium energy deuteron-induced reactions on {sup 27} al., Physical Review C., 79 (2009) 044610.
Year 2023, , 583 - 589, 29.09.2023
https://doi.org/10.17776/csj.1290957

Abstract

References

  • [1] IAEA (International Atomic Energy Agency), IAEA Radioisotopes and Radiopharmaceuticals Reports No. 1; Cyclotron Produced Radionuclides: Emerging Positron Emitters for Medical Applications: 64Cu and 124I, https:// https://www.iaea.org/publications/10791/cyclotron-produced-radionuclides-emerging-positron-emitters-for-medical-applications-64cu-and-124i Retrieved April 4, 2022.
  • [2] IAEA (International Atomic Energy Agency), Cyclotron Produced Radionuclides: Principles and Practice, Technical Reports Series No. 465, https://www-pub.iaea.org/MTCD/publications/PDF/trs465_web.pdf. Retrieved March 21, 2022.
  • [3] Gutfilen B., Souza S. A., Valentini G., Copper-64: A Real Theranostic Agent, Drug Des. Devel. Ther., 12 (2018) 3235–3245.
  • [4] Boschi A., Martini P., Janevik-Ivanovska E., Duatti A., The Emerging Role of Copper-64 Radiopharmaceuticals as Cancer Theranostics, Drug Disc. Today, 23(8) (2018) 1489–1501.
  • [5] Capriotti G., Piccardo A., Giovannelli E., Signore A., Targeting Copper in Cancer Imaging and Therapy: A New Theragnostic Agent, J Clin Med, 12(1) (2022) 223.
  • [6] Peng F., Recent Advances in Cancer Imaging with 64CuCl2 PET/CT, Nucl Med Mol Imaging, 56(2) (2022) 80-85.
  • [7] Jalilian AR., Osso JA Jr., Vera-Araujo J., et al., IAEA Contribution to the Development of 64Cu Radiopharmaceuticals for Theranostic Applications, Q. J. Nucl. Med. Mol. Imaging, 64(4) (2020) 338-345.
  • [8] Follacchio GA., De Feo MS., De Vincentis G., Monteleone F., Liberatore M., Radiopharmaceuticals Labelled with Copper Radionuclides: Clinical Results in Human Beings, Curr. Radiopharm., 11(1) (2018) 22-33.
  • [9] Ahmedova A., Todorov B., Burdzhiev N., Goze C., Copper Radiopharmaceuticals for Theranostic Applications, Eur. J. Med. Chem., 157 (2018) 1406-1425.
  • [10] Kaplan A., Şekerci M., Çapalı V., Photon Induced Reaction Cross-Section Calculations of Several Structural Fusion Materials, J Fusion Energ, 36 (2017) 213–217.
  • [11] Ozdogan H., ŞEKERCİ M., KAPLAN A, A new developed semi-empirical formula for the (alpha, p) reaction cross-section at 19 +/- 1 MeV, Modern Physics Letters A, 34 (2019) 6.
  • [12] Şekerci, M. Effects of theoretical models on the production cross-section calculations of some non-standard positron emitters., Eur. Phys. J. Plus 136 (2021) 1021.
  • [13] Krane, K.S., Nükleer Fizik ll, Çev. Sarer B., Palme Yayıncılık, 479s (2001) Ankara.
  • [14] Özdoğan H., Şekerci M., Kaplan A., An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of 50,52,53,54Cr(α,x) Reactions, Phys. At. Nucl., 83 (6) (2020) 820-827.
  • [15] Şekerci M., Özdoğan H., Kaplan A., An Investigation of Effects of Level Density Models and Gamma Ray Strength Functions on Cross-Section Calculations for the Production of 90Y, 153Sm, 169Er, 177Lu and 186Re Therapeutic Radioisotopes via (n,g) Reactions, Radiochim. Acta, 108 (1) (2020) 11-17.
  • [16] Şekerci M., Theoretical Cross-Section Calculations for the (α,n) and (α,2n) Reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes, Mosc. Univ. Phys. Bull., 75 (2) (2020) 123-132.
  • [17] Koning A., Hilaire S., Goriely S., TALYS–1.95 A Nuclear Reaction Program, User Manual. 1st ed. NRG, The Netherlands (2019).
  • [18] Herman M., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation, Nuclear Data Sheets, 108(12) (2007) 2655-2715.
  • [19] Zerkin V.V., Pritychenko B., The experimental nuclear reaction data (EXFOR): Extended Computer Database and Web Retrieval System, Nucl. Instrum. Methods. Phys. Res. A, 888 (2018) 31–43.
  • [20] Kurenkov, N.V., Lunev, V.P., Shubin, Y.N., Evaluation of Calculation Methods for Excitation Functions for Production of Radioisotopes of Iodine, Thallium and Other Elements, Applied Radiation and Isotopes, 50(3) (1999) 541-549.
  • [21] Gülümser T., Kaplan A., A Theoretical Study on the Production Cross–Section Calculations for 24Na Medical Isotope, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14 (2) (2021) 802-813.
  • [22] Şekerci M., An Investigation of the Effects of Level Density Models and Alpha Optical Model Potentials on the Cross-Section Calculations for the Production of the Radionuclides 62Cu, 67Ga, 86Y, and 89Zr via Some Alpha Induced Reactions, Radiochim. Acta, 108 (6) (2019) 459-467.
  • [23] Şekerci M., Özdoğan H., Kaplan A., Investigation on the Different Production Routes of 67Ga Radioisotope by Using Different Level Density Models, Mosc. Univ. Phys. Bull., 74 (2019) 277-281.
  • [24] Şekerci M., Özdoğan H., Kaplan A., Level Density Model Effects on the Production Cross-Section Calculations of Some Medical Isotopes via (α,xn) Reactions where x=1–3, Mod. Phys. Lett. A., 35 (2020) 24.
  • [25] Özdoğan H., Şekerci̇ M., Kaplan A., Photo-Neutron Cross-Section Calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with Newly Obtained Giant Dipole Resonance Parameters, Appl. Radiat. Isot., 165 (2020).
  • [26] Özdoğan H., Estimation of (n,p) Reaction Cross Sections at 14.5±0.5 MeV Neutron Energy by Using Artificial Neural Network, Appl. Radiat. Isot., (2021) 170.
  • [27] Kaplan A., Özdoğan H., Aydın A., Tel E., (,2n) Reaction Cross Section Calculations on Several Structural Fusion Materials, Journal Fusion Energy, 32 (2013) 431–436.
  • [28] Kaplan A., Özdoğan H., Aydın A., Tel E., Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials, Journal of Fusion Energy, 32 (2013) 97–102.
  • [29] Kaplan A., Tel E., Aydın A., The Equilibrium and Pre-equilibrium Neutron-Emission Spectra of Some Structural Fusion Materials for (n,xn) Reactions up to 16 MeV Energy, Physics of Atomic Nuclei, 72 (6) (2009) 903–910.
  • [30] Özdoğan H., Şekerci̇ M., Kaplan A., Investigation of Gamma Strength Functions and Level Density Models Effects on Photon Induced Reaction Cross–Section Calculations for the Fusion Structural Materials 46,50Ti, 51V, 58Ni and 63Cu, Applied Radiation and Isotopes, 143 (2019) 6-10.
  • [31] Carlson, B. V., 2001. A Brief Overview of Models of Nucleon-Induced Reactions, Workshop on Nuclear Data for Science & Technology: Accelerator Driven Waste Incineration, The Abdus Salam International Centre for Theoretical Physics, 10-21 September 2001, Miramare - Trieste, Italy, 185-239. Erişim Tarihi: 21.09.2021. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/071/38071998.pdf
  • [32] Griffin, J. J., 1966. Statistical model of intermediate structure, Physical Review Letters, 17, 478-481.
  • [33] Hauser, W., Feshbach, H., The Inelastic Scattering of Neutrons, Physical Review, 87(2) (1952) 366-373.
  • [34] Hodgson, P. E., Pre-Equilibrium Processes in Nuclear Reactions, Nature 292 (1981) 671-672.
  • [35] Rebeles, R. A., Van den Winkel, Hermanne, A. and Tárkányi, F., New measurement and evaluation of the excitation function of 64Ni(p,n) reaction for the production of 64Cu, Nuclear Instruments and Methods in Physics Research, 267 (2009) 457-461.
  • [36] Avila-Rodriguez, M.A., Nye, J.A., Nickles, R.J., Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei Applied Radiation and Isotopes., 65 (2007) 1115–1120.
  • [37] Tanaka, S., Furukawa, M., & Chiba, M., Nuclear reactions of nickel with protons up to 56 MeV, Journal of Inorganic and Nuclear Chemistry, 34 (1972) 2419-2426.
  • [38] Guzhovskii, B.Y., Borkin, I.M., Zvenigorodskii, A.G., Rudnev, V.S., Solodovnikov, A.P., Trusillo, S., Isospin mixing of isobar analog resonances observed for the 59,61,63,65Cu nuclei. Izvestiya Rossiiskoi Akademii Nauk., 33 (1969).
  • [39] Brinkman, G.A., Helmer, J., Lindner, L., Rhys.Rev.Lett., 28 (1977) 9.
  • [40] Hilgers, K., Stoll, T., Skakun, Y., Coenen, H., Qaim, S. M., Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,α+n)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process., Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine, 59(5-6) (2003) 343–351.
  • [41] Mannhart, W., Schmidt, D., Measurement of Neutron Activation Cross Sections in the Energy Range from 8 MeV to 15 MeV, Physikalisch-Technische Bundesanstalt Neutronenphysik Reports, 53 (2007).
  • [42] Paulsen, A., Liskien, H., Cross Sections For The Reactions Mn55(n,2n), Co59(n,2n) Mg24(n,p) and Al27(n,α) in the 12.6-19.6 MeV Energy Region, Journal of Nuclear Energy. Parts A/B. Reactor Science and Technology, 19 (1965) 907.
  • [43] Daraban, L., Adam Rebeles, R., Hermanne, A., Tarkanyi, F., Takacs, S., Study of the excitation functions for 43K, 43,44,44mSc and 44Ti by proton irradiation on 45Sc up to 37MeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(5) (2009) 755–759.
  • [44] Hermanne, A., Tarkanyi, F., Takacs, S., Kovalev and F., Ignatyuk, Activation Cross Sections of the 64Ni(d,2n)Reaction for the Production of the Medical Radionuclide 64Cu, Nucl. Instr. Meth. In Physics B.,258 (2007).
  • [45] Weissman, L., Kreisel, A., Hirsh, T., Aviv, O., Berkovits, D., Girshevitz, O., Eisen, Y., Accurate measurements of the 63Cu(d,p)64Cu and natCu(d,x)65Zn cross-sections in the 2.77–5.62 MeV energy range., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 342 (2015) 7–12.
  • [46] Bém, P., Šimečková, E., Honusek, M., Fischer, U., Simakov, S.P., Forrest, R.A., Avrigeanu, M., Obreja, A., Román, F.L., Avrigeanu, V., Low and medium energy deuteron-induced reactions on {sup 27} al., Physical Review C., 79 (2009) 044610.
There are 46 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Tuğçe Gülümser 0000-0002-1168-4917

Abdullah Kaplan 0000-0003-2990-0187

Publication Date September 29, 2023
Submission Date May 1, 2023
Acceptance Date July 11, 2023
Published in Issue Year 2023

Cite

APA Gülümser, T., & Kaplan, A. (2023). Cross-Section Calculations of Medical Radioisotope 64Cu via some Proton, Neutron and Deuteron Reactions. Cumhuriyet Science Journal, 44(3), 583-589. https://doi.org/10.17776/csj.1290957