Research Article
BibTex RIS Cite

A New Nickel(II) Complex Derived From Bisthiocarbohydrazone: Synthesis, Characterization, Crystal Structure and Antioxidant Activity

Year 2023, , 450 - 455, 29.09.2023
https://doi.org/10.17776/csj.1248428

Abstract

A new complex with composition [Ni(L)(PPh3)] (PPh3 = triphenylphosphine) was obtained from the reaction of 1,5-bis(salicylidene)thiocarbohydrazone (L) with an equimolar amount of [NiCl2(PPh3)2]. The complex was identified by FT-IR, 1H NMR and UV-Vis spectroscopic methods and elemental analysis. The solid state structure of [Ni(L)(PPh3)] was established by X-ray diffraction analysis. It was determined that the complex, whose nickel center has a distorted square planar configuration, crystallizes in the monoclinic space group I2/c. Bisthiocarbohydrazone (L) binds to the nickel center through its phenolate O, azomethine N and thioenolate S atoms in a dianionic tridentate mode. The antioxidant capacity of L and Ni(II) complex was examined using the CUPRAC (cupric reducing antioxidant capacity) method. Also, the DPPH (1,1-Diphenyl-2-picrylhydrazyl) method was used to test free radical scavenging activity of the compounds. Antioxidant activity results showed that L exhibited better activity than Ni(II) complex.

References

  • [1] Reddy B.N., Avaji P.G., Badami P.S., Patil S.A., Synthesis, spectral and biological studies of cobalt(II), nickel(II) and copper(II) complexes with 1,5-bis (thiophenylidene) thiocarbohydrazone, J. Saudi Chem. Soc., 11 (2) (2007) 253-268.
  • [2] Sathisha M.P., Shetti U.N., Revankar V.K., Pai K.S.R., Synthesis and antitumor studies on novel Co(II), Ni(II) and Cu(II) metal complexes of bis(3-acetylcoumarin) thiocarbohydrazone, Eur. J. Med. Chem., 43 (11) (2008) 2338-2346.
  • [3] Chee D.N.A., Affan M.A., Ahmad F.B., Asaruddin M.R., Sam N., Salam M.A., Ismail A., Tan S.H., Synthesis, characterization, and antibacterial activity of organotin(IV) complexes with 2-hydroxyacetophenone thiocarbohydrazone, J. Coord. Chem., 64 (23) (2011) 4191-4200.
  • [4] Metwally M.A., Khalifa M.E., Koketsu M., Thiocarbohydrazides: Synthesis and reactions, Am. J. Chem., 2 (2) (2012) 38-51.
  • [5] Kaya Y., Erçağ A., Koca A., Synthesis, structures, electrochemical studies and antioxidant activities of cis-dioxomolybdenum(VI) complexes of the new bisthiocarbohydrazones, J. Mol. Struct., 1102 (2015) 117-126.
  • [6] Mrđan G.S., Vastag G.G., Škorić D.Đ., Radanović M.M., Verbić T.Ž., Milčić M.K., Stojiljković I.N., Marković O.S., Matijević B.M., Synthesis, physicochemical characterization, and TD–DFT calculations of monothiocarbohydrazone derivatives, Struct. Chem., 32 (2021) 1231-1245.
  • [7] Kadam S.S., Gotarne R.P., Shinde M.N., Mane V.S., Khan A.A., Kumbhar A.A., Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of fluorophore-anchored asymmetric thiocarbohydrazone: Synthesis, characterization and biological studies, Inorg. Chim. Acta, 536 (2022) 120887.
  • [8] Kaya Y., Erçağ A., Zorlu Y., Demir Y., Gülçin İ., New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes, J. Biol. Inorg. Chem., 27 (2) (2022) 271-281.
  • [9] Çavuş M.S., Yakan H., Özorak C., Muğlu H., Bakır T.K., New N,N'-bis (thioamido) thiocarbohydrazones and carbohydrazones: synthesis, structure characterization, antioxidant activity, corrosion inhibitors and DFT studies, Res. Chem. Intermed., 48 (4) (2022) 1593-1613.
  • [10] Manoj E., Kurup M.R.P., Suresh E., Synthesis and spectral studies of bisthiocarbohydrazone and biscarbohydrazone of quinoline-2-carbaldehyde: crystal structure of bis (quinoline-2-aldehyde) thiocarbohydrazone, J. Chem. Crystallogr., 38 (2008) 157-161.
  • [11] Kaya Y., Investigation of spectroscopic, crystallographic, thermal and antioxidant properties of mononuclear dioxomolybdenum(VI) complexes derived from a new symmetric bisthiocarbohydrazone, Polyhedron, 227 (2022) 116151.
  • [12] Paison F., Su B., Pan D., Yan T., Wu J., The study of biological activities of various mixed ligand complexes of Nickel(II), Austin Biochem., 5 (1) (2020) 1-12.
  • [13] Ma Y.-N., Li S.-X., Yang S.-D., New approaches for biaryl-based phosphine ligand synthesis via P=O directed C–H functionalizations, Acc. Chem. Res., 50 (6) (2017) 1480-1492.
  • [14] Güveli Ş., Agopcan Çınar S., Karahan Ö., Aviyente V., Ülküseven B., Nickel(II)–PPh3 complexes of S,N‐substituted thiosemicarbazones–structure, DFT study, and catalytic efficiency, Eur. J. Inorg. Chem., 2016 (4) (2016) 538-544.
  • [15] Kaya Y., Erçağ A., Koca A., New square-planar nickel(II)-triphenylphosphine complexes containing ONS donor ligands: Synthesis, characterization, electrochemical and antioxidant properties, J. Mol. Struct., 1206 (2020) 127653.
  • [16] Shabbir M., Akhter Z., Ashraf A.R., Ismail H., Habib A., Mirza B., Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff base ligands: Synthesis, characterization and biocidal activities, J. Mol. Struct., 1149 (2017) 720-726.
  • [17] Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O., Oxidative stress and antioxidant defense, World Allergy Organ. J., 5 (2012) 9-19.
  • [18] Bentz E.N., Pomilio A.B., Lobayan R.M., Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin, Comput. Theor. Chem., 1110 (2017) 14-24.
  • [19] Burns G.R., Metal complexes of thiocarbohydrazide, Inorg. Chem., 7 (2) (1968) 277-283.
  • [20] Sheldrick G.M., SHELXT–Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A: Found. Adv., 71 (1) (2015) 3-8.
  • [21] Sheldrick G.M., Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C: Struct. Chem., 71 (1) (2015) 3-8.
  • [22] APEX2, version 2014.11-0, Bruker (2014), Bruker AXS Inc., Madison, WI.
  • [23] SAINT, version 8.34 A, Bruker (2013), Bruker AXS Inc., Madison, WI.
  • [24] Kaya İ., Temizkan K., Kaya Y., Erçağ A., The monomers and polymers of azomethine-based thiocarbohydrazones: Fluorescent activities, fluorescence quantum yields of polymers in water and DMF solutions, Mater. Sci. Eng., B, 282 (2022) 115782.
  • [25] Brand-Williams W., Cuvelier M.-E., Berset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 28 (1) (1995) 25-30.
  • [26] Apak R., Güçlü K., Özyürek M., Karademir S.E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem., 52 (26) (2004) 7970-7981.
  • [27] Kaya Y., Erçağ A., Uğuz Ö., Koca A., Zorlu Y., Hacıoğlu M., Birteksöz Tan A.S., New asymmetric bisthiocarbohydrazones and their mixed ligand nickel(II) complexes: Synthesis, characterization, crystal structure, electrochemical-spectroelectrochemical property, antimicrobial and antioxidant activity, Polyhedron, 207 (2021) 115372.
  • [28] Rana A., Dinda R., Sengupta P., Ghosh S., Falvello L.R., Synthesis, characterisation and crystal structure of cis-dioxomolybdenum(VI) complexes of some potentially pentadentate but functionally tridentate (ONS) donor ligands, Polyhedron, 21 (9-10) (2002) 1023-1030.
  • [29] Deng Y., Yang Y., Zhang Y., Yan Q., Liu J., Formation of an asymmetrical ligand (H3Lcyclic) via a metal-induced cyclization of symmetrical thiocarbohydrazone (H4L) in synthesizing an oxovanadium(IV) complex VO(HLcyclic)(EtOH)2, J. Coord. Chem., 65 (8) (2012) 1409-1416.
  • [30] Priyarega S., Kalaivani P., Prabhakaran R., Hashimoto T., Endo A., Natarajan K., Nickel(II) complexes containing thiosemicarbazone and triphenylphosphine: Synthesis, spectroscopy, crystallography and catalytic activity, J. Mol. Struct., 1002 (1-3) (2011) 58-62.
  • [31] Kundu S., Pramanik A.K., Mondal A.S., Mondal T.K., Ni(II) and Pd(II) complexes with new N,O donor thiophene appended Schiff base ligand: Synthesis, electrochemistry, X-ray structure and DFT calculation, J. Mol. Struct., 1116 (2016) 1-8.
  • [32] Tamizh M.M., Mereiter K., Kirchner K., Bhat B.R., Karvembu R., Synthesis, crystal structures and spectral studies of square planar nickel(II) complexes containing an ONS donor Schiff base and triphenylphosphine, Polyhedron, 28 (11) (2009) 2157-2164.
  • [33] Prabhakaran R., Kalaivani P., Huang R., Poornima P., Vijaya Padma V., Dallemer F., Natarajan K., DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: Synthesis, spectroscopy, electrochemistry, and X-ray crystallography, J. Biol. Inorg. Chem., 18 (2013) 233-247.
  • [34] Kumar S.M., Dhahagani K., Rajesh J., Nehru K., Annaraj J., Chakkaravarthi G., Rajagopal G., Synthesis, characterization, structural analysis and DNA binding studies of nickel(II)–triphenylphosphine complex of ONS donor ligand–Multisubstituted thiosemicarbazone as highly selective sensor for fluoride ion, Polyhedron, 59 (2013) 58-68.
  • [35] Güveli Ş., Koca A., Özdemir N., Bal-Demirci T., Ülküseven B., Electrochemistry and structural properties of new mixed ligand nickel(II) complexes based on thiosemicarbazone, New J. Chem., 38 (11) (2014) 5582-5589.
  • [36] Elsayed S.A., Badr H.E., di Biase A., El-Hendawy A.M., Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: Interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis, J. Inorg. Biochem., 223 (2021) 111549.
  • [37] Kılıç-Cıkla I., Güveli Ş., Bal-Demirci T., Aygün M., Ülküseven B., Yavuz M., X-ray diffraction, spectroscopic and DFT studies on nickel(II)-triphenylphosphine complexes of 2-hydroxyacetophenone thiosemicarbazones, Polyhedron, 130 (2017) 1-12.
  • [38] Apak R., Güçlü K., Özyürek M., Çelik S.E., Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay, Microchim. Acta, 160 (4) (2008) 413-419.
  • [39] Asha T.M., Prathapachandra Kurup M.R., An insight into the potent antioxidant activity of a dithiocarbohydrazone appended cis‐dioxidomolybdenum(VI) complexes, Appl. Organomet. Chem., 34 (9) (2020) e5762.
Year 2023, , 450 - 455, 29.09.2023
https://doi.org/10.17776/csj.1248428

Abstract

References

  • [1] Reddy B.N., Avaji P.G., Badami P.S., Patil S.A., Synthesis, spectral and biological studies of cobalt(II), nickel(II) and copper(II) complexes with 1,5-bis (thiophenylidene) thiocarbohydrazone, J. Saudi Chem. Soc., 11 (2) (2007) 253-268.
  • [2] Sathisha M.P., Shetti U.N., Revankar V.K., Pai K.S.R., Synthesis and antitumor studies on novel Co(II), Ni(II) and Cu(II) metal complexes of bis(3-acetylcoumarin) thiocarbohydrazone, Eur. J. Med. Chem., 43 (11) (2008) 2338-2346.
  • [3] Chee D.N.A., Affan M.A., Ahmad F.B., Asaruddin M.R., Sam N., Salam M.A., Ismail A., Tan S.H., Synthesis, characterization, and antibacterial activity of organotin(IV) complexes with 2-hydroxyacetophenone thiocarbohydrazone, J. Coord. Chem., 64 (23) (2011) 4191-4200.
  • [4] Metwally M.A., Khalifa M.E., Koketsu M., Thiocarbohydrazides: Synthesis and reactions, Am. J. Chem., 2 (2) (2012) 38-51.
  • [5] Kaya Y., Erçağ A., Koca A., Synthesis, structures, electrochemical studies and antioxidant activities of cis-dioxomolybdenum(VI) complexes of the new bisthiocarbohydrazones, J. Mol. Struct., 1102 (2015) 117-126.
  • [6] Mrđan G.S., Vastag G.G., Škorić D.Đ., Radanović M.M., Verbić T.Ž., Milčić M.K., Stojiljković I.N., Marković O.S., Matijević B.M., Synthesis, physicochemical characterization, and TD–DFT calculations of monothiocarbohydrazone derivatives, Struct. Chem., 32 (2021) 1231-1245.
  • [7] Kadam S.S., Gotarne R.P., Shinde M.N., Mane V.S., Khan A.A., Kumbhar A.A., Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of fluorophore-anchored asymmetric thiocarbohydrazone: Synthesis, characterization and biological studies, Inorg. Chim. Acta, 536 (2022) 120887.
  • [8] Kaya Y., Erçağ A., Zorlu Y., Demir Y., Gülçin İ., New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes, J. Biol. Inorg. Chem., 27 (2) (2022) 271-281.
  • [9] Çavuş M.S., Yakan H., Özorak C., Muğlu H., Bakır T.K., New N,N'-bis (thioamido) thiocarbohydrazones and carbohydrazones: synthesis, structure characterization, antioxidant activity, corrosion inhibitors and DFT studies, Res. Chem. Intermed., 48 (4) (2022) 1593-1613.
  • [10] Manoj E., Kurup M.R.P., Suresh E., Synthesis and spectral studies of bisthiocarbohydrazone and biscarbohydrazone of quinoline-2-carbaldehyde: crystal structure of bis (quinoline-2-aldehyde) thiocarbohydrazone, J. Chem. Crystallogr., 38 (2008) 157-161.
  • [11] Kaya Y., Investigation of spectroscopic, crystallographic, thermal and antioxidant properties of mononuclear dioxomolybdenum(VI) complexes derived from a new symmetric bisthiocarbohydrazone, Polyhedron, 227 (2022) 116151.
  • [12] Paison F., Su B., Pan D., Yan T., Wu J., The study of biological activities of various mixed ligand complexes of Nickel(II), Austin Biochem., 5 (1) (2020) 1-12.
  • [13] Ma Y.-N., Li S.-X., Yang S.-D., New approaches for biaryl-based phosphine ligand synthesis via P=O directed C–H functionalizations, Acc. Chem. Res., 50 (6) (2017) 1480-1492.
  • [14] Güveli Ş., Agopcan Çınar S., Karahan Ö., Aviyente V., Ülküseven B., Nickel(II)–PPh3 complexes of S,N‐substituted thiosemicarbazones–structure, DFT study, and catalytic efficiency, Eur. J. Inorg. Chem., 2016 (4) (2016) 538-544.
  • [15] Kaya Y., Erçağ A., Koca A., New square-planar nickel(II)-triphenylphosphine complexes containing ONS donor ligands: Synthesis, characterization, electrochemical and antioxidant properties, J. Mol. Struct., 1206 (2020) 127653.
  • [16] Shabbir M., Akhter Z., Ashraf A.R., Ismail H., Habib A., Mirza B., Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff base ligands: Synthesis, characterization and biocidal activities, J. Mol. Struct., 1149 (2017) 720-726.
  • [17] Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O., Oxidative stress and antioxidant defense, World Allergy Organ. J., 5 (2012) 9-19.
  • [18] Bentz E.N., Pomilio A.B., Lobayan R.M., Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin, Comput. Theor. Chem., 1110 (2017) 14-24.
  • [19] Burns G.R., Metal complexes of thiocarbohydrazide, Inorg. Chem., 7 (2) (1968) 277-283.
  • [20] Sheldrick G.M., SHELXT–Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A: Found. Adv., 71 (1) (2015) 3-8.
  • [21] Sheldrick G.M., Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C: Struct. Chem., 71 (1) (2015) 3-8.
  • [22] APEX2, version 2014.11-0, Bruker (2014), Bruker AXS Inc., Madison, WI.
  • [23] SAINT, version 8.34 A, Bruker (2013), Bruker AXS Inc., Madison, WI.
  • [24] Kaya İ., Temizkan K., Kaya Y., Erçağ A., The monomers and polymers of azomethine-based thiocarbohydrazones: Fluorescent activities, fluorescence quantum yields of polymers in water and DMF solutions, Mater. Sci. Eng., B, 282 (2022) 115782.
  • [25] Brand-Williams W., Cuvelier M.-E., Berset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 28 (1) (1995) 25-30.
  • [26] Apak R., Güçlü K., Özyürek M., Karademir S.E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J. Agric. Food Chem., 52 (26) (2004) 7970-7981.
  • [27] Kaya Y., Erçağ A., Uğuz Ö., Koca A., Zorlu Y., Hacıoğlu M., Birteksöz Tan A.S., New asymmetric bisthiocarbohydrazones and their mixed ligand nickel(II) complexes: Synthesis, characterization, crystal structure, electrochemical-spectroelectrochemical property, antimicrobial and antioxidant activity, Polyhedron, 207 (2021) 115372.
  • [28] Rana A., Dinda R., Sengupta P., Ghosh S., Falvello L.R., Synthesis, characterisation and crystal structure of cis-dioxomolybdenum(VI) complexes of some potentially pentadentate but functionally tridentate (ONS) donor ligands, Polyhedron, 21 (9-10) (2002) 1023-1030.
  • [29] Deng Y., Yang Y., Zhang Y., Yan Q., Liu J., Formation of an asymmetrical ligand (H3Lcyclic) via a metal-induced cyclization of symmetrical thiocarbohydrazone (H4L) in synthesizing an oxovanadium(IV) complex VO(HLcyclic)(EtOH)2, J. Coord. Chem., 65 (8) (2012) 1409-1416.
  • [30] Priyarega S., Kalaivani P., Prabhakaran R., Hashimoto T., Endo A., Natarajan K., Nickel(II) complexes containing thiosemicarbazone and triphenylphosphine: Synthesis, spectroscopy, crystallography and catalytic activity, J. Mol. Struct., 1002 (1-3) (2011) 58-62.
  • [31] Kundu S., Pramanik A.K., Mondal A.S., Mondal T.K., Ni(II) and Pd(II) complexes with new N,O donor thiophene appended Schiff base ligand: Synthesis, electrochemistry, X-ray structure and DFT calculation, J. Mol. Struct., 1116 (2016) 1-8.
  • [32] Tamizh M.M., Mereiter K., Kirchner K., Bhat B.R., Karvembu R., Synthesis, crystal structures and spectral studies of square planar nickel(II) complexes containing an ONS donor Schiff base and triphenylphosphine, Polyhedron, 28 (11) (2009) 2157-2164.
  • [33] Prabhakaran R., Kalaivani P., Huang R., Poornima P., Vijaya Padma V., Dallemer F., Natarajan K., DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: Synthesis, spectroscopy, electrochemistry, and X-ray crystallography, J. Biol. Inorg. Chem., 18 (2013) 233-247.
  • [34] Kumar S.M., Dhahagani K., Rajesh J., Nehru K., Annaraj J., Chakkaravarthi G., Rajagopal G., Synthesis, characterization, structural analysis and DNA binding studies of nickel(II)–triphenylphosphine complex of ONS donor ligand–Multisubstituted thiosemicarbazone as highly selective sensor for fluoride ion, Polyhedron, 59 (2013) 58-68.
  • [35] Güveli Ş., Koca A., Özdemir N., Bal-Demirci T., Ülküseven B., Electrochemistry and structural properties of new mixed ligand nickel(II) complexes based on thiosemicarbazone, New J. Chem., 38 (11) (2014) 5582-5589.
  • [36] Elsayed S.A., Badr H.E., di Biase A., El-Hendawy A.M., Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: Interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis, J. Inorg. Biochem., 223 (2021) 111549.
  • [37] Kılıç-Cıkla I., Güveli Ş., Bal-Demirci T., Aygün M., Ülküseven B., Yavuz M., X-ray diffraction, spectroscopic and DFT studies on nickel(II)-triphenylphosphine complexes of 2-hydroxyacetophenone thiosemicarbazones, Polyhedron, 130 (2017) 1-12.
  • [38] Apak R., Güçlü K., Özyürek M., Çelik S.E., Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay, Microchim. Acta, 160 (4) (2008) 413-419.
  • [39] Asha T.M., Prathapachandra Kurup M.R., An insight into the potent antioxidant activity of a dithiocarbohydrazone appended cis‐dioxidomolybdenum(VI) complexes, Appl. Organomet. Chem., 34 (9) (2020) e5762.
There are 39 citations in total.

Details

Primary Language English
Subjects Metabolomic Chemistry
Journal Section Natural Sciences
Authors

Yeliz Kaya 0000-0001-5606-8088

Publication Date September 29, 2023
Submission Date February 6, 2023
Acceptance Date August 22, 2023
Published in Issue Year 2023

Cite

APA Kaya, Y. (2023). A New Nickel(II) Complex Derived From Bisthiocarbohydrazone: Synthesis, Characterization, Crystal Structure and Antioxidant Activity. Cumhuriyet Science Journal, 44(3), 450-455. https://doi.org/10.17776/csj.1248428