Research Article
BibTex RIS Cite
Year 2023, , 370 - 376, 30.06.2023
https://doi.org/10.17776/csj.1247286

Abstract

References

  • [1] Liculescu E. C., Bejan D., Nonlinear optical properties of GaAs pyramidal quantum dots: Effects of elliptically polarized radiation, impurity, and magnetic applied fields, Physica E: Low-dimensional Systems and Nanostructures, 74 (2015) 51-58.
  • [2] Harrison P., Quantum Wells, Wires, Dots (2. Edition). England:Wiley, (2005).
  • [3] Jacak L., Semiconductor quantum dots-towards a new generation of semiconductor devices, European Physical Journal, 21 (2000) 487-497.
  • [4] Xie W. F., Two interacting electrons in a Gaussian confining potential quantum dot, Solid State Communications, 127 (2003) 401-405.
  • [5] Owen J., Brus L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots, Journal of American Chemical Society, 139 (2017) 10939-10943.
  • [6] Davies J. H., The Physics of Low-Dimensional Semiconductors: An Introduction (5.Edition). USA:Cambridge, (1999).
  • [7] Başer P, Bahar M. K., Evaluation of the external electric-and magnetic field-driven Mathieu quantum dot’s optical observables, Physica B:Condense Matter, 639 (2022) 413991-413999.
  • [8] Bahar M. K, Başer P., Nonlinear optical characteristics of thermodynamic effects-and electric field-triggered Mathieu quantum dot, Micro and Nanostructures, 170 (2022) 207371-207382.
  • [9] Bahar M. K, Başer P., Tuning of nonlinear optical characteristics of Mathieu quantum dot by laser and electric field, The European Physical Journal Plus, 137 (2022) 1138-1148.
  • [10] Kortshagen U., Nonthermal plasma synthesis of semiconductor nanocrystals, Journal of Physics D: Applied Physics, 42 (2009) 113001-113023.
  • [11] Pi, X. D., Kortshagen, U., Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals, Nanotechnology, 20 (2009) 295602-295608.
  • [12] Bahar M. K., Soylu A., Two-electron quantum dot in plasmas under the external fields, Physics of Plasmas, 25 (2018) 022106-022118.
  • [13] Bahar M. K., Soylu A., Confinement control mechanism for two-electron Hulthen quantum dots in plasmas, Journal of Physics B:Atomic, Molecular and Optical Physics, 51 (2018) 105701-105715.
  • [14] Bahar M. K., Soylu A., Laser-driven two-electron quantum dot in plasmas, Physics of Plasmas, 25 (2018) 062113-062125.
  • [15] Bahar M. K., Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential, Physics of Plasmas, 21 (2014) 072706-072716.
  • [16] Ciftci H., Hal R. L., Saad N., Asymptotic iteration method for eigenvalue problems, Journal of Physics A: Mathematical and General, 36 (2003) 11807-11816.
  • [17] Ciftci H., Hall R. L., Saad N., Construction of exact solutions to eigenvalue problems by the asymptotic iteration method, Journal of Physics A: Mathematical and General, 38 (2005) 1147-1155.
  • [18] Saad N., Ciftci H., Hall R. L., Criterion for polynomial solutions to a class of linear differential equations of second order, Journal of Physics A: Mathematical and General, 39 (2005) 13445-13454.

The Energy Spectra of Electric Induced Mathieu Quantum Dot with Hydrogenic Impurity Implanted in Quantum Plasma

Year 2023, , 370 - 376, 30.06.2023
https://doi.org/10.17776/csj.1247286

Abstract

In this study, the energy spectra of the electric induced Mathieu quantum dot (MQD), containing the central hydrogenic impurity, fabricated by heterostructure InxGaAs1-x/GaAs, implanted in quantum plasma is considered. The effects of the external electric field, structural parameters and plasma screening on the energy levels of the MQD with the hydrogenic impurity are probed. The more general exponential cosine screened Coulomb (MGECSC) potential is used to depict the quantum plasma interactions. In order to solve the related Schrödinger equation, the numerical asymptotic iteration method (AIM) is employed. Achievable values of the effective potential parameters are taken into consideration, and for special purposes, the alternative to each other of these parameters is also evaluated.

References

  • [1] Liculescu E. C., Bejan D., Nonlinear optical properties of GaAs pyramidal quantum dots: Effects of elliptically polarized radiation, impurity, and magnetic applied fields, Physica E: Low-dimensional Systems and Nanostructures, 74 (2015) 51-58.
  • [2] Harrison P., Quantum Wells, Wires, Dots (2. Edition). England:Wiley, (2005).
  • [3] Jacak L., Semiconductor quantum dots-towards a new generation of semiconductor devices, European Physical Journal, 21 (2000) 487-497.
  • [4] Xie W. F., Two interacting electrons in a Gaussian confining potential quantum dot, Solid State Communications, 127 (2003) 401-405.
  • [5] Owen J., Brus L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots, Journal of American Chemical Society, 139 (2017) 10939-10943.
  • [6] Davies J. H., The Physics of Low-Dimensional Semiconductors: An Introduction (5.Edition). USA:Cambridge, (1999).
  • [7] Başer P, Bahar M. K., Evaluation of the external electric-and magnetic field-driven Mathieu quantum dot’s optical observables, Physica B:Condense Matter, 639 (2022) 413991-413999.
  • [8] Bahar M. K, Başer P., Nonlinear optical characteristics of thermodynamic effects-and electric field-triggered Mathieu quantum dot, Micro and Nanostructures, 170 (2022) 207371-207382.
  • [9] Bahar M. K, Başer P., Tuning of nonlinear optical characteristics of Mathieu quantum dot by laser and electric field, The European Physical Journal Plus, 137 (2022) 1138-1148.
  • [10] Kortshagen U., Nonthermal plasma synthesis of semiconductor nanocrystals, Journal of Physics D: Applied Physics, 42 (2009) 113001-113023.
  • [11] Pi, X. D., Kortshagen, U., Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals, Nanotechnology, 20 (2009) 295602-295608.
  • [12] Bahar M. K., Soylu A., Two-electron quantum dot in plasmas under the external fields, Physics of Plasmas, 25 (2018) 022106-022118.
  • [13] Bahar M. K., Soylu A., Confinement control mechanism for two-electron Hulthen quantum dots in plasmas, Journal of Physics B:Atomic, Molecular and Optical Physics, 51 (2018) 105701-105715.
  • [14] Bahar M. K., Soylu A., Laser-driven two-electron quantum dot in plasmas, Physics of Plasmas, 25 (2018) 062113-062125.
  • [15] Bahar M. K., Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential, Physics of Plasmas, 21 (2014) 072706-072716.
  • [16] Ciftci H., Hal R. L., Saad N., Asymptotic iteration method for eigenvalue problems, Journal of Physics A: Mathematical and General, 36 (2003) 11807-11816.
  • [17] Ciftci H., Hall R. L., Saad N., Construction of exact solutions to eigenvalue problems by the asymptotic iteration method, Journal of Physics A: Mathematical and General, 38 (2005) 1147-1155.
  • [18] Saad N., Ciftci H., Hall R. L., Criterion for polynomial solutions to a class of linear differential equations of second order, Journal of Physics A: Mathematical and General, 39 (2005) 13445-13454.
There are 18 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Natural Sciences
Authors

Mustafa Kemal Bahar 0000-0003-4265-1402

Publication Date June 30, 2023
Submission Date February 3, 2023
Acceptance Date April 4, 2023
Published in Issue Year 2023

Cite

APA Bahar, M. K. (2023). The Energy Spectra of Electric Induced Mathieu Quantum Dot with Hydrogenic Impurity Implanted in Quantum Plasma. Cumhuriyet Science Journal, 44(2), 370-376. https://doi.org/10.17776/csj.1247286