Research Article
BibTex RIS Cite

DNA Barcoding of Commercial Cockroaches in Turkey

Year 2023, , 28 - 35, 26.03.2023
https://doi.org/10.17776/csj.1196804

Abstract

Accurate species identification has become a precondition for accomplished biodiversity administration and further genetic research. Species acquaintance technics require molecular tools such as DNA barcoding as well as morphological identification for accurate identification. Particularly, the application of subunit I of the mitochondrial cytochrome c oxidase (COI) gene for DNA barcoding for insects has approved to be very useful in species acquaintance. The main aim of this study is to generate the first reference library of DNA barcode for cockroaches in Turkey using previously published data. As a result of the literature research, it has been observed that no study has been carried out on the DNA barcode of Turkish cockroaches. Therefore, in this study, we evaluated the advantage of DNA barcoding applied to two cockroach samples from Turkey for the first time. Our working samples implicated 10 DNA barcodes grounded on sequences created from our present study and 109 other DNA barcodes from BOLD. Various molecular analyzes including genetic distance-origin assessment (NeighborJoining and Maximum Likelihood trees) has been applied to accurately identify and describe species. In addition, Blaptica dubia (B. dubia) (Serville, 1838) and Nauphoeta cinerea (N. cinerea) (Olivier, 1789) have been reported as the first country records. It has been observed that reference libraries like BOLD are not yet sufficiently populated with COI sequences of Turkish cockroach species. In order for Turkish cockroach bio-assessment and biodiversity studies to benefit from the advantages of DNA barcoding, it is of great importance that cockroach inventories and taxonomic studies include DNA barcodes.

Thanks

All analyses in this study were performed in the Molecular Biology laboratory of the Sivas Cumhuriyet University Advanced Technology and Research Center (CUTAM).

References

  • [1] Hebert P.D., Gregory T.R. The promise of DNA barcoding for taxonomy, Syst. Biol., 54 (2005) 852-859.
  • [2] Dormontt E.E., Van Dijk K.-J., Bell K.L., Biffin E., Breed M.F., Byrne M., Caddy-Retalic S., Encinas-Viso F., Nevill P.G., Shapcott A. Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections—an Australian perspective, Front. Ecol. Evol. FRONT ECOL EVOL., 6 (2018) 134.
  • [3] Bohmann K., Mirarab S., Bafna V., Gilbert M.T.P. Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification, Wiley Online Library, 2020.
  • [4] Lahaye R., Van der Bank M., Bogarin D., Warner J., Pupulin F., Gigot G., Maurin O., Duthoit S., Barraclough T.G., Savolainen V. DNA barcoding the floras of biodiversity hotspots, PNAS., 105 (2008) 2923-2928.
  • [5] Fazekas A.J., Burgess K.S., Kesanakurti P.R., Graham S.W., Newmaster S.G., Husband B.C., Percy D.M., Hajibabaei M., Barrett S.C. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well, PloS one., 3 (2008) e2802.
  • [6] Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Consortium F.B., List F.B.C.A., Bolchacova E. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi, PNAS., 109 (2012) 6241-6246.
  • [7] Hebert P.D., Cywinska A., Ball S.L., DeWaard J.R. Biological identifications through DNA barcodes, Proc. R. Soc. B: Biol., 270 (2003) 313-321.
  • [8] Hebert P.D., Penton E.H., Burns J.M., Janzen D.H., Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator, PNAS., 101 (2004) 14812-14817.
  • [9] Hajibabaei M., Janzen D.H., Burns J.M., Hallwachs W., Hebert P.D. DNA barcodes distinguish species of tropical Lepidoptera, PNAS., 103 (2006) 968-971.
  • [10] Ratnasingham S., Hebert P.D. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org), Mol. Ecol. Notes., 7 (2007) 355-364.
  • [11] Elyasigorji Z., Izadpanah M., Hadi F., Zare M. Mitochondrial genes as strong molecular markers for species identification, The Nucleus, (2022).
  • [12] Kvist S. Barcoding in the dark? A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge, Mol. Phylogenet Evol., 69 (2013) 39-45.
  • [13] Witt J.D., Threloff D.L., Hebert P.D. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation, Mol. Ecol., 15 (2006) 3073-3082.
  • [14] Pfenninger M., Schwenk K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions, BMC Evol. Biol., 7 (2007) 1-6.
  • [15] Jalali S., Ojha R., Venkatesan T. DNA barcoding for identification of agriculturally important insects, New horizons in insect science: Towards sustainable pest management, Springer, (2015) 13-23.
  • [16] Pomés A., Arruda L.K. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients, Methods, 66 (2014) 75-85.
  • [17] Zhang J., Zhang Y., Li J., Liu M., Liu Z.,Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response, PLoS One., 11 (2016) e0155254.
  • [18] Fakoorziba M.R., Eghbal F., Hassanzadeh J., Moemenbellah-Fard M.D. Cockroaches (Periplaneta americana and Blattella germanica) as potential vectors of the pathogenic bacteria found in nosocomial infections, Ann Trop Med Parasitol., 104 (2010) 521-528.
  • [19] Atiokeng Tatang R.J., Tsila H.G., Wabo Poné J. Medically Important Parasites Carried by Cockroaches in Melong Subdivision, Littoral, Cameroon, J Parasitol Res., 2017 (2017) 7967325.
  • [20] Bouchebti S., Durier V., Pasquaretta C., Rivault C., Lihoreau M. Subsocial Cockroaches Nauphoeta cinerea Mate Indiscriminately with Kin Despite High Costs of Inbreeding, PLoS One., 11 (2016) e0162548.
  • [21] Schimpf N.G., Matthews P.G., White C.R.,Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches Nauphoeta cinerea, Biol Open., 1 (2012) 1185-1191.
  • [22] Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol Mar Biol Biotechnol., 3 (1994) 294-299.
  • [23] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J Mol Evol., 16 (1980) 111-120.
  • [24] Evangelista D., Buss L., Ware J.L. Using DNA barcodes to confirm the presence of a new invasive cockroach pest in New York City, J Econ Entomol., 106 (2013) 2275-2279.
  • [25] Farah Haziqah M.T., Nur Asyiqin M.N., Mohd Khalid M.K.N., Suresh K., Rajamanikam A., Chandrawathani P., Mohd Zain S.N. Current status of Blastocystis in cockroaches, Trop Biomed., 34 (2017) 741-745.
  • [26] Miskelly J., Paiero S.M. Mantodea, Blattodea, Orthoptera, Dermaptera, and Phasmida of Canada, Zookeys, (2019) 255-269.
  • [27] Liao S., Wang Z., Che Y. A new genus and a new species in the subfamily Polyzosteriinae (Blattodea, Blattidae) from China, Zookeys, 852 (2019) 85-100.
  • [28] von Beeren C., Stoeckle M.Y., Xia J., Burke G., Kronauer D.J. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana), Sci Rep., 5 (2015) 8297.
  • [29] Li Y., Luo X., Zhang J., Wang Z., Che Y. A new species of Bundoksia Lucañas, 2021 with comments on its subfamilial placement, based on morphological and molecular data, Zookeys, 1085 (2022) 145-163.4
Year 2023, , 28 - 35, 26.03.2023
https://doi.org/10.17776/csj.1196804

Abstract

References

  • [1] Hebert P.D., Gregory T.R. The promise of DNA barcoding for taxonomy, Syst. Biol., 54 (2005) 852-859.
  • [2] Dormontt E.E., Van Dijk K.-J., Bell K.L., Biffin E., Breed M.F., Byrne M., Caddy-Retalic S., Encinas-Viso F., Nevill P.G., Shapcott A. Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections—an Australian perspective, Front. Ecol. Evol. FRONT ECOL EVOL., 6 (2018) 134.
  • [3] Bohmann K., Mirarab S., Bafna V., Gilbert M.T.P. Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification, Wiley Online Library, 2020.
  • [4] Lahaye R., Van der Bank M., Bogarin D., Warner J., Pupulin F., Gigot G., Maurin O., Duthoit S., Barraclough T.G., Savolainen V. DNA barcoding the floras of biodiversity hotspots, PNAS., 105 (2008) 2923-2928.
  • [5] Fazekas A.J., Burgess K.S., Kesanakurti P.R., Graham S.W., Newmaster S.G., Husband B.C., Percy D.M., Hajibabaei M., Barrett S.C. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well, PloS one., 3 (2008) e2802.
  • [6] Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Consortium F.B., List F.B.C.A., Bolchacova E. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi, PNAS., 109 (2012) 6241-6246.
  • [7] Hebert P.D., Cywinska A., Ball S.L., DeWaard J.R. Biological identifications through DNA barcodes, Proc. R. Soc. B: Biol., 270 (2003) 313-321.
  • [8] Hebert P.D., Penton E.H., Burns J.M., Janzen D.H., Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator, PNAS., 101 (2004) 14812-14817.
  • [9] Hajibabaei M., Janzen D.H., Burns J.M., Hallwachs W., Hebert P.D. DNA barcodes distinguish species of tropical Lepidoptera, PNAS., 103 (2006) 968-971.
  • [10] Ratnasingham S., Hebert P.D. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org), Mol. Ecol. Notes., 7 (2007) 355-364.
  • [11] Elyasigorji Z., Izadpanah M., Hadi F., Zare M. Mitochondrial genes as strong molecular markers for species identification, The Nucleus, (2022).
  • [12] Kvist S. Barcoding in the dark? A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge, Mol. Phylogenet Evol., 69 (2013) 39-45.
  • [13] Witt J.D., Threloff D.L., Hebert P.D. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation, Mol. Ecol., 15 (2006) 3073-3082.
  • [14] Pfenninger M., Schwenk K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions, BMC Evol. Biol., 7 (2007) 1-6.
  • [15] Jalali S., Ojha R., Venkatesan T. DNA barcoding for identification of agriculturally important insects, New horizons in insect science: Towards sustainable pest management, Springer, (2015) 13-23.
  • [16] Pomés A., Arruda L.K. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients, Methods, 66 (2014) 75-85.
  • [17] Zhang J., Zhang Y., Li J., Liu M., Liu Z.,Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response, PLoS One., 11 (2016) e0155254.
  • [18] Fakoorziba M.R., Eghbal F., Hassanzadeh J., Moemenbellah-Fard M.D. Cockroaches (Periplaneta americana and Blattella germanica) as potential vectors of the pathogenic bacteria found in nosocomial infections, Ann Trop Med Parasitol., 104 (2010) 521-528.
  • [19] Atiokeng Tatang R.J., Tsila H.G., Wabo Poné J. Medically Important Parasites Carried by Cockroaches in Melong Subdivision, Littoral, Cameroon, J Parasitol Res., 2017 (2017) 7967325.
  • [20] Bouchebti S., Durier V., Pasquaretta C., Rivault C., Lihoreau M. Subsocial Cockroaches Nauphoeta cinerea Mate Indiscriminately with Kin Despite High Costs of Inbreeding, PLoS One., 11 (2016) e0162548.
  • [21] Schimpf N.G., Matthews P.G., White C.R.,Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches Nauphoeta cinerea, Biol Open., 1 (2012) 1185-1191.
  • [22] Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol Mar Biol Biotechnol., 3 (1994) 294-299.
  • [23] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J Mol Evol., 16 (1980) 111-120.
  • [24] Evangelista D., Buss L., Ware J.L. Using DNA barcodes to confirm the presence of a new invasive cockroach pest in New York City, J Econ Entomol., 106 (2013) 2275-2279.
  • [25] Farah Haziqah M.T., Nur Asyiqin M.N., Mohd Khalid M.K.N., Suresh K., Rajamanikam A., Chandrawathani P., Mohd Zain S.N. Current status of Blastocystis in cockroaches, Trop Biomed., 34 (2017) 741-745.
  • [26] Miskelly J., Paiero S.M. Mantodea, Blattodea, Orthoptera, Dermaptera, and Phasmida of Canada, Zookeys, (2019) 255-269.
  • [27] Liao S., Wang Z., Che Y. A new genus and a new species in the subfamily Polyzosteriinae (Blattodea, Blattidae) from China, Zookeys, 852 (2019) 85-100.
  • [28] von Beeren C., Stoeckle M.Y., Xia J., Burke G., Kronauer D.J. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana), Sci Rep., 5 (2015) 8297.
  • [29] Li Y., Luo X., Zhang J., Wang Z., Che Y. A new species of Bundoksia Lucañas, 2021 with comments on its subfamilial placement, based on morphological and molecular data, Zookeys, 1085 (2022) 145-163.4
There are 29 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Şeyda Berk 0000-0003-4687-0223

Ayşe Nur Pektaş 0000-0001-5621-2844

Publication Date March 26, 2023
Submission Date October 31, 2022
Acceptance Date March 14, 2023
Published in Issue Year 2023

Cite

APA Berk, Ş., & Pektaş, A. N. (2023). DNA Barcoding of Commercial Cockroaches in Turkey. Cumhuriyet Science Journal, 44(1), 28-35. https://doi.org/10.17776/csj.1196804