Research Article
BibTex RIS Cite

The Effect of Two Different Botulinum Neurotoxin A On The Cortical Neuron Cells In Terms of Apoptosis and MMP 2, MMP 7, and MMP9 Localizations

Year 2023, , 19 - 27, 26.03.2023
https://doi.org/10.17776/csj.1180547

Abstract

This study aimed to associate the possible cytotoxic and apoptotic effects of Botox (Allergan) and Dysport (Ipsen) and immunolocalization of matrix metalloproteinase (MMP) proteins with HCN2 cortical neuron cell line. Accordingly, cytotoxic potentials of Botox and Dysport were determined on different concentrations. Then, the apoptosis rates of these cells were evaluated by TUNEL method. MMP2, MMP7, and MMP9 proteins were also visualized using immunofluorescence method. There was a significant difference in cytotoxicity between those treated with 3.2, 6.4, and 12.8IU compared with the control. The Dysport 12.8 IU group was statistically more toxic than Botox group at the same concentration. Therefore, the number of apoptotic cells increased from 0.1 IU in Botox and 0.01 IU in Dysport groups compared to the control. The number of apoptotic cells was significantly higher in Dysport group at 1.6, 3.2, 6.4, and 12.8 IU concentrations than in Botox group. It was determined that MMPs increased gradually at the concentrations where the number of apoptotic cells was highest compared to the control group. As a result, we consider that it may be necessary to deal with the dose adjustment in Botox and Dysport applications, together with detailed studies to be carried out in the future.

Supporting Institution

CÜBAP

Project Number

T-756

References

  • [1] Li Z., Lu J., Tan X., Wang R., Xu Q., Yu Y., Yang Z., Functional EL-HN Fragment as a Potent Candidate Vaccine for the Prevention of Botulinum Neurotoxin Serotype E, Toxins, 14 (2022) 135.
  • [2] Alberts T., Antipova V., Holzmann C., Hawlitschka A., Schmitt O., Kurth J., Stenzel J., Lindner T., Krause B.J., Wree A., Witt, M., Olfactory Bulb D2/D3 Receptor Availability after Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson’s Disease, Toxins, 14 (2022) 94.
  • [3] Carlı L., Montecucco C., Rossetto O., Assay of diffusion of different Botulinum neurotoxin type A formulations injected in the mouse leg, Muscle Nerve, 40 (2009) 374-380.
  • [4] Curra A., Trompetto C., Abbruzzese G., Berardelli A., Central Effects of Botulinum Toxin Type A: Evidence and Supposition, Movement Disorders, 19 (8) (2004) 60-64.
  • [5] Aoki K.R., Ranoux D., Wissel J., Using translational medicine to understand clinical differences between botulinum toxin formulations, Eur. J. Neurol., 13 (4) (2006) 10–19.
  • [6] Wiegand H., Erdmann G., Wellhoner H.H., 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection, Naunyn Schmiedebergs Arch. Pharmacol., 292 (1976) 161-165.
  • [7] Hagenah R., Benecke R., Wiegand H., Effects of type A botulinum toxin on the cholinergic transmission at spinal Renshaw cells and on the inhibitory action at Ia inhibitory interneurones, Naunyn Schmiedebergs Arch. Pharmacol., 299 (1977) 267-272.
  • [8] Boroff D.A., Chen G.S., On the question of permeability of the blood-brain barrier to BoNT, Int. Arch. Allergy Appl. Immunol., 48 (1975) 495-504.
  • [9] Welch M.J., Purkiss J.R., Foster K.A., Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins, Toxicon, 38 (2000) 245-258.
  • [10] Berliocchi L., Fava E., Leist M., Horvat V., Dinsdale D., Read D., Nico P., Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis, J. Cell Biol., 168 (2005) 607-618.
  • [11] Bertheloot D., Latz E., Franklin B.S., Necroptosis, pyroptosis and apoptosis: an intricate game of cell death, Cel Mol. Immunol., 18 (2021) 1106–1121.
  • [12] Gualdoni G., Castro G.G., Hernandez R., Barbeito C., Cebral E., Comparative matrix metalloproteinase-2 and -9 expression and activity during endotheliochorial and hemochorial trophoblastic invasiveness, Tissue and Cell, 74 (2022) 101698.
  • [13] Kwan J.A., Schulze C.J., Wang W., Leon H., Sariahmetoglu M., Sung M., Sawicka J., Sims D.E., Sawicki G., Schulz R., Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (adp-ribose) polymerase (parp) in vitro, FASEB J., 18 (2004) 690-692.
  • [14] Kanda H., Shimamura R., Koizumi-Kitajima M., Okano H., Degradation of Extracellular Matrix by Matrix Metalloproteinase 2 Is Essential for the Establishment of the Blood-Brain Barrier in Drosophila, iScience, 16 (2019) 218-229.
  • [15] Wu M.Y., Gao F., Yang X.M., Qin X., Chen G.Z., Li D., Dang B.Q., Chen G., Matrix metalloproteinase-9 regulates the blood brain barrier via the hedgehog pathway in a rat model of traumatic brain injury, Brain Res., 727 (2020) 146553.
  • [16] Sharma R., Cakar Z., Agarwal A., TUNEL assay by benchtop flow cytometer in clinical laboratories. In: Zini A., Agarwal A., (Eds). A Clinician’s guide to sperm DNA and chromatin damage. Berlin: Springer, (2018) 103–118.
  • [17] Pellett S., Progress in cell based assays for botulinum neurotoxin detection, Curr. Top. Microbiol. Immunol., 364 (2013) 257–285.
  • [18] Bibi F., Ullah I., Ki, M.O., Naseer M.I., Metformin attenuate PTZ-induced apoptotic neurodegeneration in human cortical neuronal cells, Pakistan Jjournal of Medical Sciences, 33 (3) (2017) 581.
  • [19] Sozmen F., Kucukoflaz M., Ergul M., Inan Z.D.S., Bozkurt Y., Taydas D., Synthesis of Multifunctional Organic Nanoparticles Combining Photodynamic Therapy and Chemotherapeutic Drug Release, Macromolecular Research, 30 (1) (2022) 61-69.
  • [20] Sozmen F., Kucukoflaz M., Ergul M., Inan Z.D.S., Nanoparticles with PDT and PTT synergistic properties working with dual NIR-light source simultaneously, RSC Advances, 11 (4) (2021) 2383-2389.
  • [21] Awan K.H., The therapeutic usage of botulinum toxin (Botox) in non-cosmetic head and neck conditions–an evidence based review, Saudi Pharm. J., 25 (1) (2017) 18-24.
  • [22] Flynn T.C., Advances in the use of botulinum neurotoxins in facial esthetics, J. Cosmet. Dermatol., 11 (1) (2012) 42-50.
  • [23] Bhattacharjee K., Mehta A., Journey of a therapeutic poison: Botulinum toxin A and its biosimilars, Indian J Ophthalmol, 69 (10) (2021) 2568-2569.
  • [24] Ferguson K., Wolfgram N., Botulinum Toxin. In: Deer T., Pope J., Lamer T., Provenzano D., (Eds). Deer's Treatment of Pain. Cham: Springer, (2019) 163-169.
  • [25] Deng X., Wang Y., Chou J., Cadet J.L., Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method, Mol. Brain Res., 93 (1) (2001) 64-69.
  • [26] Hexsel C., Hexsel D., Porto M.D., Schilling J., Siega C., Botulinum toxin type A for aging face and aesthetic uses, Dermatol. Ther., 24 (1) (2011) 54-61.
  • [27] Ascher B., Talarico S., Cassuto D., Escobar S., Hexsel D., Jaen P., Monheit G.D., Rzany B., Viel M., International consensus recommendations on the aesthetic usage of botulinum toxin type A (Speywood Unit)–part II: wrinkles on the middle and lower face, neck and chest, J. Eur. Acad. Dermatol. Venereol., 24 (11) (2010) 1285–1295.
  • [28] Rzany B., Zielke H., Safety of botulinum toxin in aesthetic medicine. In: de Maio M., Rzany B., (Eds). Botulinum Toxin in Aesthetic Medicine. New York: Springer-Verlag Berlin Heidelberg, (2007) 19-25.
  • [29] Food and Drug Administration, How Drugs Are Developed and Approved. Available at: https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved. 2019.
  • [30] Irvine C.A., BOTOX Cosmetic Product Information. BOTOX Cosmetic. Available at: http://www.allergan.com/products/medical_aesthetics/botox_cosmetic.htm. 2012.
  • [31] Kitamura M., Binding of botulinum neurotoxin to the synaptosome fraction of rat brain, Naunyn Schmiedebergs Arch. Pharmacol., 295 (1976) 171-175.
Year 2023, , 19 - 27, 26.03.2023
https://doi.org/10.17776/csj.1180547

Abstract

Project Number

T-756

References

  • [1] Li Z., Lu J., Tan X., Wang R., Xu Q., Yu Y., Yang Z., Functional EL-HN Fragment as a Potent Candidate Vaccine for the Prevention of Botulinum Neurotoxin Serotype E, Toxins, 14 (2022) 135.
  • [2] Alberts T., Antipova V., Holzmann C., Hawlitschka A., Schmitt O., Kurth J., Stenzel J., Lindner T., Krause B.J., Wree A., Witt, M., Olfactory Bulb D2/D3 Receptor Availability after Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson’s Disease, Toxins, 14 (2022) 94.
  • [3] Carlı L., Montecucco C., Rossetto O., Assay of diffusion of different Botulinum neurotoxin type A formulations injected in the mouse leg, Muscle Nerve, 40 (2009) 374-380.
  • [4] Curra A., Trompetto C., Abbruzzese G., Berardelli A., Central Effects of Botulinum Toxin Type A: Evidence and Supposition, Movement Disorders, 19 (8) (2004) 60-64.
  • [5] Aoki K.R., Ranoux D., Wissel J., Using translational medicine to understand clinical differences between botulinum toxin formulations, Eur. J. Neurol., 13 (4) (2006) 10–19.
  • [6] Wiegand H., Erdmann G., Wellhoner H.H., 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection, Naunyn Schmiedebergs Arch. Pharmacol., 292 (1976) 161-165.
  • [7] Hagenah R., Benecke R., Wiegand H., Effects of type A botulinum toxin on the cholinergic transmission at spinal Renshaw cells and on the inhibitory action at Ia inhibitory interneurones, Naunyn Schmiedebergs Arch. Pharmacol., 299 (1977) 267-272.
  • [8] Boroff D.A., Chen G.S., On the question of permeability of the blood-brain barrier to BoNT, Int. Arch. Allergy Appl. Immunol., 48 (1975) 495-504.
  • [9] Welch M.J., Purkiss J.R., Foster K.A., Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins, Toxicon, 38 (2000) 245-258.
  • [10] Berliocchi L., Fava E., Leist M., Horvat V., Dinsdale D., Read D., Nico P., Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis, J. Cell Biol., 168 (2005) 607-618.
  • [11] Bertheloot D., Latz E., Franklin B.S., Necroptosis, pyroptosis and apoptosis: an intricate game of cell death, Cel Mol. Immunol., 18 (2021) 1106–1121.
  • [12] Gualdoni G., Castro G.G., Hernandez R., Barbeito C., Cebral E., Comparative matrix metalloproteinase-2 and -9 expression and activity during endotheliochorial and hemochorial trophoblastic invasiveness, Tissue and Cell, 74 (2022) 101698.
  • [13] Kwan J.A., Schulze C.J., Wang W., Leon H., Sariahmetoglu M., Sung M., Sawicka J., Sims D.E., Sawicki G., Schulz R., Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (adp-ribose) polymerase (parp) in vitro, FASEB J., 18 (2004) 690-692.
  • [14] Kanda H., Shimamura R., Koizumi-Kitajima M., Okano H., Degradation of Extracellular Matrix by Matrix Metalloproteinase 2 Is Essential for the Establishment of the Blood-Brain Barrier in Drosophila, iScience, 16 (2019) 218-229.
  • [15] Wu M.Y., Gao F., Yang X.M., Qin X., Chen G.Z., Li D., Dang B.Q., Chen G., Matrix metalloproteinase-9 regulates the blood brain barrier via the hedgehog pathway in a rat model of traumatic brain injury, Brain Res., 727 (2020) 146553.
  • [16] Sharma R., Cakar Z., Agarwal A., TUNEL assay by benchtop flow cytometer in clinical laboratories. In: Zini A., Agarwal A., (Eds). A Clinician’s guide to sperm DNA and chromatin damage. Berlin: Springer, (2018) 103–118.
  • [17] Pellett S., Progress in cell based assays for botulinum neurotoxin detection, Curr. Top. Microbiol. Immunol., 364 (2013) 257–285.
  • [18] Bibi F., Ullah I., Ki, M.O., Naseer M.I., Metformin attenuate PTZ-induced apoptotic neurodegeneration in human cortical neuronal cells, Pakistan Jjournal of Medical Sciences, 33 (3) (2017) 581.
  • [19] Sozmen F., Kucukoflaz M., Ergul M., Inan Z.D.S., Bozkurt Y., Taydas D., Synthesis of Multifunctional Organic Nanoparticles Combining Photodynamic Therapy and Chemotherapeutic Drug Release, Macromolecular Research, 30 (1) (2022) 61-69.
  • [20] Sozmen F., Kucukoflaz M., Ergul M., Inan Z.D.S., Nanoparticles with PDT and PTT synergistic properties working with dual NIR-light source simultaneously, RSC Advances, 11 (4) (2021) 2383-2389.
  • [21] Awan K.H., The therapeutic usage of botulinum toxin (Botox) in non-cosmetic head and neck conditions–an evidence based review, Saudi Pharm. J., 25 (1) (2017) 18-24.
  • [22] Flynn T.C., Advances in the use of botulinum neurotoxins in facial esthetics, J. Cosmet. Dermatol., 11 (1) (2012) 42-50.
  • [23] Bhattacharjee K., Mehta A., Journey of a therapeutic poison: Botulinum toxin A and its biosimilars, Indian J Ophthalmol, 69 (10) (2021) 2568-2569.
  • [24] Ferguson K., Wolfgram N., Botulinum Toxin. In: Deer T., Pope J., Lamer T., Provenzano D., (Eds). Deer's Treatment of Pain. Cham: Springer, (2019) 163-169.
  • [25] Deng X., Wang Y., Chou J., Cadet J.L., Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method, Mol. Brain Res., 93 (1) (2001) 64-69.
  • [26] Hexsel C., Hexsel D., Porto M.D., Schilling J., Siega C., Botulinum toxin type A for aging face and aesthetic uses, Dermatol. Ther., 24 (1) (2011) 54-61.
  • [27] Ascher B., Talarico S., Cassuto D., Escobar S., Hexsel D., Jaen P., Monheit G.D., Rzany B., Viel M., International consensus recommendations on the aesthetic usage of botulinum toxin type A (Speywood Unit)–part II: wrinkles on the middle and lower face, neck and chest, J. Eur. Acad. Dermatol. Venereol., 24 (11) (2010) 1285–1295.
  • [28] Rzany B., Zielke H., Safety of botulinum toxin in aesthetic medicine. In: de Maio M., Rzany B., (Eds). Botulinum Toxin in Aesthetic Medicine. New York: Springer-Verlag Berlin Heidelberg, (2007) 19-25.
  • [29] Food and Drug Administration, How Drugs Are Developed and Approved. Available at: https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved. 2019.
  • [30] Irvine C.A., BOTOX Cosmetic Product Information. BOTOX Cosmetic. Available at: http://www.allergan.com/products/medical_aesthetics/botox_cosmetic.htm. 2012.
  • [31] Kitamura M., Binding of botulinum neurotoxin to the synaptosome fraction of rat brain, Naunyn Schmiedebergs Arch. Pharmacol., 295 (1976) 171-175.
There are 31 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Deniz Şahin İnan 0000-0002-0292-4448

Zübeyde Akın Polat 0000-0002-1130-4953

Rasim Hamutoğlu 0000-0002-2474-5336

Project Number T-756
Publication Date March 26, 2023
Submission Date September 26, 2022
Acceptance Date March 14, 2023
Published in Issue Year 2023

Cite

APA Şahin İnan, D., Akın Polat, Z., & Hamutoğlu, R. (2023). The Effect of Two Different Botulinum Neurotoxin A On The Cortical Neuron Cells In Terms of Apoptosis and MMP 2, MMP 7, and MMP9 Localizations. Cumhuriyet Science Journal, 44(1), 19-27. https://doi.org/10.17776/csj.1180547