Year 2022,
, 569 - 576, 27.12.2022
Ayşegül Öztürk
,
Vedat Sabancıoğulları
,
Yaşar Taştemur
,
İbrahim Öztoprak
References
- [1] International Diabetes Federation. International diabetes federation: IDF Atlas. Brussels: Belgium (2017).
- [2] Dyck P. J., Kratz K. M., Karnes J. L., Litchy W. J., Klein R., Pach J. M., Wilson D. M., O'Brien P. C., Melton L. J., 3rd & Service F. J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study, Neurology, 43 (1993) 817–24.
- [3] Pop-Busui, R., Boulton, A. J., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., Sosenko, J. M., & Ziegler, D. (2017). Diabetic Neuropathy: A Position Statement by the American Diabetes Association, Diabetes Care, 40(1) (2017) 136–154.
- [4] Tesfaye, S., Chaturvedi, N., Eaton, S. E., Ward, J. D., Manes, C., Ionescu-Tirgoviste, C., Witte, D. R., Fuller, J. H. Vascular risk factors and diabetic neuropathy. Prospective epidemiological study showing that, apart from glycemic control, incident neuropathy is associated with modifiable cardiovascular risk factors, N. Engl. J. Med., 352 (2005) 341–50.
- [5] Said G., Diabetic neuropathy-A Review, Nat. Clin. Prac. Neurol., 3 (2007) 331-340.
- [6] Albers JW., Diabetic Neuropathy: Mechanisms, Emerging Treatments and Subtypes, Curr. Neurol. Neurosci. Rep., 14 (2014) 473.
- [7] Charnogursky G., Emanuele N.V., Emanuele M.A., Neurological Complications of diabetes, Curr. Neuro.l Neurosci. Rep., 14 (2014) 457.
- [8] McCormick D.A., Bal T., Sensory gating mechanisms of the thalamus, Curr. Opin. Neurobiol., 4 (1994) 550–556.
- [9] Mohammadi M.R., Hosseini S.H., Golalipour M.J., Morphometric measurements of the thalamus and interthalamic adhesion by MRI in the South-East of the Caspian Sea border, Neurosciences, 13(3) (2008) 272-275.
- [10] Caetano S.C., Sassi R., Brambilla P., Harenski K., Nicoletti M., Mallinger A.G., Frank E., Kupfer D.J., Keshavan M.S., Soares J.C., MRI study of thalamic volumes in bipolar and unipolar patients and healthy individuals, Psychiatry Res., 108 (2001) 161–168.
- [11] Sen F., Ulubay H., Ozeksi P., Sargon M.F., Tascioglu A.B. Morphometric measurements of the thalamus and interthalamic adhesion by MR imaging, Neuroanatomy., 4 (2005) 10-12.
- [12] Tastemur Y., Sabanciogulları V., Salk I., Cimen M. The Relationship of the Posterior Cranial Fossa, the Cerebrum, and Cerebellum Morphometry with Tonsiller Herniation, Iran J. Radiol., 14(1) (2017) e24436.
- [13] Yasuda S., Miyazaki S., Kanda M., Goto Y., Suzuki M., Harano Y., Nonogi H., Intensive treatment of risk factors in patients with type-2 diabetes mellitus is associated with improvement of endothelial function coupled with a reduction in the levels of plasma asymmetric dimethylarginine and endogenous inhibitor of nitric oxide synthase, Eur. Heart J., 27(10) (2006) 1159-65.
- [14] Selvarajah, D., Wilkinson, I. D., Emery, C. J., Harris, N. D., Shaw, P. J., Witte, D. R., Griffiths, P. D., & Tesfaye, S. Early involvement of the spinal cord in diabetic peripheral neuropathy, Diabetes Care., 29 (2006) 2664–2669.
- [15] Selvarajah D., Wilkinson I. D., Maxwell M., Davies J., Sankar A., Boland E., Gandhi R., Tracey I., Tesfaye S., Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy, Diabetes Care, 37 (2014) 1681–8.
- [16] Gustin S.M., Peck C.C., Wilcox S.L., Nash P.G., Murray G.M., Henderson L.A., Differentpain, different brain: thalamic anatomy in neuropathicandnon-neuropathic chronic pain syndromes, J. Neurosci., 31 (2011) 5956–5964.
- [17] Giorgio A., De Stefano N. Clinical use of brain volumetry, J. Magn. Reson Imaging, 37 (2013) 1–14
- [18] Musen G., Lyoo I. K., Sparks C. R., Weinger K., Hwang J., Ryan C. M., Jimerson D. C., Hennen J., Renshaw P. F., Jacobson, A. M., Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry, Diabetes, 55 (2006) 326–333.
- [19] Ge Y., Grossman R.I., Babb J.S., Rabin M.L., Mannon L.J., Kolson D.L., Age-related total gray matter and white matter changes in normal adult brain. Part I: Volumetric MR imaging analysis, Am. J. Neuroradiol., 23 (2002) 1327-1333.
- [20] Gur R. C., Mozley P. D., Resnick S. M., Gottlieb G. L., Kohn M., Zimmerman R., Herman G., Atlas S., Grossman R., Berretta, D., Gender differences in age effect on brain atrophy measured by magnetic resonance imaging, Proc. Natl. Acad. Sci. USA., 88 (1991) 2845–2849.
- [21] Liu H., Wang L., Geng Z., Zhu Q., Song Z., Chang R,. Lv H., A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain, Neuropsychiatric Disease and Treatment, 12 (2016) 453–465
- [22] Salat D.H., Kaye J.A., Janowsky J.S., Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease, Arch Neurol., 56 (1999) 338–344.
- [23] Swieten J.C., Den Hout J.H.W., Ketel B.A., Hydra A., Wokke J.H.J., van Gijn J., Periventricular lesions in the white matter on magnetic resonance imaing in the elderly, Brain, 114 (1991) 761–774.
- [24] Sze G., DeArmond S., Brant-Zawadski M., Davis R.L., Norman D., Newton T.H., Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding, Am. J. Neuroradiol., 7 (1986) 381–387.
- [25] Fazekas F., Kleinert R., Offenbacher H., Schmidt R., Kleinert G., Payer F., Radner H., Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities, Neurology, 43 (1993) 1683–1689.
- [26] Awad I.A., Johnson P.C., Spetzler R.F., Hodak J.A., Incidental subcortical lesions identified on magnetic resonance imaging in the elderly, II: postmortem pathological correlations, Stroke, 17 (1986) 1090–1097.
- [27] Fazekas F., Kleinert R., Offenbacher H., Payer F., Schmidt R., Kleinert G., Radner H., Lechner H., The morphologic correlate of incidental white matter hyperintensities on MR images, Am. J. Neuroradiol., 12 (1991) 915–921.
- [28] Grafton S.T., Sumi S.M., Stimac G.K., Alvord E.C Jr., Shaw C.M., Nochilin D., Comparison of postmortem magnetic resonance imaging and neuropathologic findings in the cerebral white matter, Arch Neurol., 48 (1991) 293–298.
- [29] Sorensen L., Siddall P.J., Trenell M.I., Yue D.K., Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy, Diabetes Care, 31 (2008) 980–981.
- [30] Nakano M., Ueda H., Li J.Y., Matsumoto M., Yanagihara T., Measurement of regional N-acetylaspartate after transient global ischemia in gerbils with and without ischemic tolerance: an index of neuronal survival, Ann Neurol., 44 (1998) 334–340.
- [31] Selvarajah D., Wilkinson I. D., Emery C. J., Shaw P. J., Griffiths P. D., Gandhi R., Tesfaye S., Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus, Diabetologia, 51 (2008) 2088-2092.
- [32] Selvarajah D., Wilkinson I.D., Gandhi R., Griffiths P.D., Tesfaye S., Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes, Diabetes Care., 34(3) (2011) 718–720.
- [33] Fischer T.Z., Waxman S.G., Neuropathic pain in diabetes evidence for a central mechanism, Nat. Rev. Neurol., 6(8) (2010) 462–466.
- [34] Bilgili Y., Ünal B., Kendi T., Simsir İ., Erdal H., Huvaj S., Simay K., Bademci G., MRG ile normal görünümlü beyaz ve gri cevherde yaşlanmanın etkilerinin ADC değerleri ile saptanabilirliği, Tanısal ve Girişimsel Radyoloji, 10(1) (2004) 4-7.
- [35] Karasu R., Bilgili Y., Korpus kallosumun difüzyon ağırlıklı ve konvansiyonel manyetik rezonans görüntüleme ile yaşa göre değerlendirilmesi, Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 20(1) (2018) 51-61.
- [36] Chun T., Filippi C.G., Zimmerman R.D., Ulug A.M., Diffusion changes in the aging human brain, AJNR, 21 (2000) 1078-83.
- [37] Engelter S.T., Provenzale J.M., Petrella J.R., DeLong D.M., MacFall JR., The effect of aging on the apparent diffusion coefficient of normal-appearing white matter, AJR, 175 (2000) 425-30.
Evaluation of Thalamus Volumes in Patients with Diabetic Polyneuropathy Using Magnetic Resonance Imaging Method
Year 2022,
, 569 - 576, 27.12.2022
Ayşegül Öztürk
,
Vedat Sabancıoğulları
,
Yaşar Taştemur
,
İbrahim Öztoprak
Abstract
The neurological process in diabetes is not limited to peripheral nerves but also affects the central nervous system (CNS). In addition, magnetic resonance images (MRI) showing that this condition can occur early in the neuropathic process are also available. This study was conducted to investigate whether peripheral sensory nerve dysfunction causes changes in thalamus volume in patients with diabetic polyneuropathy (DPNP) who experience sensory loss. Our study is a retrospective study consisting of diabetes mellitus (DM), DPNP and a healthy control group, where brain MRI of 204 individuals aged between 20-90 with no neurological disorder that might affect thalamus. Morphometric measurements for thalamus and cerebrum volumetry were performed in conventional MRI. In order to measure the microstructural changes of thalamus, the apparent diffusion coefficient (ADC) was calculated by the diffusion-weighted imaging method. In conclusion of our measurements, it was found that individuals with DM and DPNP had a decrease in volume of both thalami(p<0.05) and cerebrum(p<0.05). However, no significant difference was found in ADC values(p>0.05). According to the results of research, DM and DPNP affect not only the peripheral nervous system but also the CNS. This effect caused atrophy of thalamus and cerebrum in patients of all age groups.
References
- [1] International Diabetes Federation. International diabetes federation: IDF Atlas. Brussels: Belgium (2017).
- [2] Dyck P. J., Kratz K. M., Karnes J. L., Litchy W. J., Klein R., Pach J. M., Wilson D. M., O'Brien P. C., Melton L. J., 3rd & Service F. J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study, Neurology, 43 (1993) 817–24.
- [3] Pop-Busui, R., Boulton, A. J., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., Sosenko, J. M., & Ziegler, D. (2017). Diabetic Neuropathy: A Position Statement by the American Diabetes Association, Diabetes Care, 40(1) (2017) 136–154.
- [4] Tesfaye, S., Chaturvedi, N., Eaton, S. E., Ward, J. D., Manes, C., Ionescu-Tirgoviste, C., Witte, D. R., Fuller, J. H. Vascular risk factors and diabetic neuropathy. Prospective epidemiological study showing that, apart from glycemic control, incident neuropathy is associated with modifiable cardiovascular risk factors, N. Engl. J. Med., 352 (2005) 341–50.
- [5] Said G., Diabetic neuropathy-A Review, Nat. Clin. Prac. Neurol., 3 (2007) 331-340.
- [6] Albers JW., Diabetic Neuropathy: Mechanisms, Emerging Treatments and Subtypes, Curr. Neurol. Neurosci. Rep., 14 (2014) 473.
- [7] Charnogursky G., Emanuele N.V., Emanuele M.A., Neurological Complications of diabetes, Curr. Neuro.l Neurosci. Rep., 14 (2014) 457.
- [8] McCormick D.A., Bal T., Sensory gating mechanisms of the thalamus, Curr. Opin. Neurobiol., 4 (1994) 550–556.
- [9] Mohammadi M.R., Hosseini S.H., Golalipour M.J., Morphometric measurements of the thalamus and interthalamic adhesion by MRI in the South-East of the Caspian Sea border, Neurosciences, 13(3) (2008) 272-275.
- [10] Caetano S.C., Sassi R., Brambilla P., Harenski K., Nicoletti M., Mallinger A.G., Frank E., Kupfer D.J., Keshavan M.S., Soares J.C., MRI study of thalamic volumes in bipolar and unipolar patients and healthy individuals, Psychiatry Res., 108 (2001) 161–168.
- [11] Sen F., Ulubay H., Ozeksi P., Sargon M.F., Tascioglu A.B. Morphometric measurements of the thalamus and interthalamic adhesion by MR imaging, Neuroanatomy., 4 (2005) 10-12.
- [12] Tastemur Y., Sabanciogulları V., Salk I., Cimen M. The Relationship of the Posterior Cranial Fossa, the Cerebrum, and Cerebellum Morphometry with Tonsiller Herniation, Iran J. Radiol., 14(1) (2017) e24436.
- [13] Yasuda S., Miyazaki S., Kanda M., Goto Y., Suzuki M., Harano Y., Nonogi H., Intensive treatment of risk factors in patients with type-2 diabetes mellitus is associated with improvement of endothelial function coupled with a reduction in the levels of plasma asymmetric dimethylarginine and endogenous inhibitor of nitric oxide synthase, Eur. Heart J., 27(10) (2006) 1159-65.
- [14] Selvarajah, D., Wilkinson, I. D., Emery, C. J., Harris, N. D., Shaw, P. J., Witte, D. R., Griffiths, P. D., & Tesfaye, S. Early involvement of the spinal cord in diabetic peripheral neuropathy, Diabetes Care., 29 (2006) 2664–2669.
- [15] Selvarajah D., Wilkinson I. D., Maxwell M., Davies J., Sankar A., Boland E., Gandhi R., Tracey I., Tesfaye S., Magnetic resonance neuroimaging study of brain structural differences in diabetic peripheral neuropathy, Diabetes Care, 37 (2014) 1681–8.
- [16] Gustin S.M., Peck C.C., Wilcox S.L., Nash P.G., Murray G.M., Henderson L.A., Differentpain, different brain: thalamic anatomy in neuropathicandnon-neuropathic chronic pain syndromes, J. Neurosci., 31 (2011) 5956–5964.
- [17] Giorgio A., De Stefano N. Clinical use of brain volumetry, J. Magn. Reson Imaging, 37 (2013) 1–14
- [18] Musen G., Lyoo I. K., Sparks C. R., Weinger K., Hwang J., Ryan C. M., Jimerson D. C., Hennen J., Renshaw P. F., Jacobson, A. M., Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry, Diabetes, 55 (2006) 326–333.
- [19] Ge Y., Grossman R.I., Babb J.S., Rabin M.L., Mannon L.J., Kolson D.L., Age-related total gray matter and white matter changes in normal adult brain. Part I: Volumetric MR imaging analysis, Am. J. Neuroradiol., 23 (2002) 1327-1333.
- [20] Gur R. C., Mozley P. D., Resnick S. M., Gottlieb G. L., Kohn M., Zimmerman R., Herman G., Atlas S., Grossman R., Berretta, D., Gender differences in age effect on brain atrophy measured by magnetic resonance imaging, Proc. Natl. Acad. Sci. USA., 88 (1991) 2845–2849.
- [21] Liu H., Wang L., Geng Z., Zhu Q., Song Z., Chang R,. Lv H., A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain, Neuropsychiatric Disease and Treatment, 12 (2016) 453–465
- [22] Salat D.H., Kaye J.A., Janowsky J.S., Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease, Arch Neurol., 56 (1999) 338–344.
- [23] Swieten J.C., Den Hout J.H.W., Ketel B.A., Hydra A., Wokke J.H.J., van Gijn J., Periventricular lesions in the white matter on magnetic resonance imaing in the elderly, Brain, 114 (1991) 761–774.
- [24] Sze G., DeArmond S., Brant-Zawadski M., Davis R.L., Norman D., Newton T.H., Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding, Am. J. Neuroradiol., 7 (1986) 381–387.
- [25] Fazekas F., Kleinert R., Offenbacher H., Schmidt R., Kleinert G., Payer F., Radner H., Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities, Neurology, 43 (1993) 1683–1689.
- [26] Awad I.A., Johnson P.C., Spetzler R.F., Hodak J.A., Incidental subcortical lesions identified on magnetic resonance imaging in the elderly, II: postmortem pathological correlations, Stroke, 17 (1986) 1090–1097.
- [27] Fazekas F., Kleinert R., Offenbacher H., Payer F., Schmidt R., Kleinert G., Radner H., Lechner H., The morphologic correlate of incidental white matter hyperintensities on MR images, Am. J. Neuroradiol., 12 (1991) 915–921.
- [28] Grafton S.T., Sumi S.M., Stimac G.K., Alvord E.C Jr., Shaw C.M., Nochilin D., Comparison of postmortem magnetic resonance imaging and neuropathologic findings in the cerebral white matter, Arch Neurol., 48 (1991) 293–298.
- [29] Sorensen L., Siddall P.J., Trenell M.I., Yue D.K., Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy, Diabetes Care, 31 (2008) 980–981.
- [30] Nakano M., Ueda H., Li J.Y., Matsumoto M., Yanagihara T., Measurement of regional N-acetylaspartate after transient global ischemia in gerbils with and without ischemic tolerance: an index of neuronal survival, Ann Neurol., 44 (1998) 334–340.
- [31] Selvarajah D., Wilkinson I. D., Emery C. J., Shaw P. J., Griffiths P. D., Gandhi R., Tesfaye S., Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus, Diabetologia, 51 (2008) 2088-2092.
- [32] Selvarajah D., Wilkinson I.D., Gandhi R., Griffiths P.D., Tesfaye S., Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes, Diabetes Care., 34(3) (2011) 718–720.
- [33] Fischer T.Z., Waxman S.G., Neuropathic pain in diabetes evidence for a central mechanism, Nat. Rev. Neurol., 6(8) (2010) 462–466.
- [34] Bilgili Y., Ünal B., Kendi T., Simsir İ., Erdal H., Huvaj S., Simay K., Bademci G., MRG ile normal görünümlü beyaz ve gri cevherde yaşlanmanın etkilerinin ADC değerleri ile saptanabilirliği, Tanısal ve Girişimsel Radyoloji, 10(1) (2004) 4-7.
- [35] Karasu R., Bilgili Y., Korpus kallosumun difüzyon ağırlıklı ve konvansiyonel manyetik rezonans görüntüleme ile yaşa göre değerlendirilmesi, Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 20(1) (2018) 51-61.
- [36] Chun T., Filippi C.G., Zimmerman R.D., Ulug A.M., Diffusion changes in the aging human brain, AJNR, 21 (2000) 1078-83.
- [37] Engelter S.T., Provenzale J.M., Petrella J.R., DeLong D.M., MacFall JR., The effect of aging on the apparent diffusion coefficient of normal-appearing white matter, AJR, 175 (2000) 425-30.